
DAKOTA Manuals (10/16/98) Main Menu 1

SEACAS
Library

Author’s
Manual

DAKOTA
Manuals

JAS 3D
Manuals

Pronto 3D
Manuals

Theory
Manuals

Draft Version

i Blue text
indicates

a link to more
information.

DAKOTA Manuals
User’s Instructions

Configuration Management

Developer’s Guide

Example Problems

Theory Manual

SEACAS
Library

DAKOTA User’s Instructions (10/26/98) Main Menu 2

DAKOTA
Manuals

User’s
Instructions

Developer’s
Guide

Configuration
Management

Example
Problems

Theory
Manual

Draft Version

i Blue text
indicates

a link to more
information.

User’s Instructions

DAKOTA Introduction

Capability Overview

Simulation Interfacing

Exploiting Parallelism

DAKOTA Commands

DAKOTA User’s Instruct 3

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DA
Intr

i Blue text
indicates

a link to more
information.

Mo

Wh

Tu

De
ions (6/11/99) DAKOTA Introduction - Main Menu

Capability
Overview

KOTA
oduction

Simulation
Interfacing

DAKOTA
Commands

Draft Version

Exploiting
Parallelism

DAKOTA Introduction

tivation

at is DAKOTA?

torial
Getting started
Some useful features of DAKOTA

cision Tables for DAKOTA Methods and Strategies

DAK 4

D
In

S

D

In

ulating complex physical
ics, heat transfer,
. In many situations
al processes. These
velop an understanding
ten observed in the
ed as virtual prototypes,
cation dimensions and
ormance of a particular
es. Optimization of the
the performance
 and directed way, such
n as measured by the
formulated, for example,

e, stress, or vibration
onfigurability, agility, or
pment of DAKOTA has
 obtaining improved or
s. Making this capability
oved system performance
e dependence on real
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Motivation

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Motivation

Advanced computational methods have been developed for sim
systems in disciplines such as fluid mechanics, structural dynam
nonlinear structural mechanics, shock physics, and many others
simulators can be used to generate highly accurate models of re
simulators can be an enormous aid to engineers who want to de
and/or predictive capability for the complex behaviors that are of
respective physical systems. Often, these simulators are employ
where a set of predefined system parameters, such as size or lo
material properties, are adjusted to improve or optimize the perf
system, as defined by one or more system performance objectiv
virtual prototype then requires running the simulator, evaluation
objective(s), and adjusting the system parameters in an iterative
that an improved or optimal solution is obtained for the simulatio
performance objective(s). System performance objectives can be
to minimize weight, cost, or defects; to limit a critical temperatur
response; or to maximize performance, reliability, throughput, rec
design robustness. One of the primary motivations for the develo
been to provide engineers with a systematic and rapid means of
optimal design approximations from their simulator-based model
available to engineers generally leads to better designs and impr
at earlier stages of the design phase, and eliminates some of th

DAK 5

D
In

S

D

In

 reducing overall product

tion, computational
 assess risk in high-
nses to model variations,

ns. In each of these
used to provide the
al engineering questions
erformance, safety, and
xtensible framework for
pact of computational
ivity strives to achieve.
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Motivation

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
prototypes and testing, thereby shortening the design cycle and
development costs.

In addition to improving performance objectives through optimiza
simulations can also be used as tools to quantify uncertainty and
consequence events, to investigate the sensitivity of critical respo
and to reconcile model predictions with experimental observatio
studies (as well as many others), computational simulations are
necessary informational building blocks for answering fundament
about the predictive accuracy of computational models and the p
reliability of products and processes. By providing a flexible and e
the answering of these fundamental questions, the utility and im
methods can be greatly extended. This is what the DAKOTA act

DAK 6

D
In

S

D

In

flexible, extensible
ds and strategies. While
etween simulation codes
panded to include other

zation methods and
mplements uncertainty
eter estimation with

is with general-purpose
that DAKOTA has to offer
be obtained through a
ulator. DAKOTA
lieving you of this often

xecutes your simulation
in conjunction with the
int solutions from your
uch as “what is the best
 my answer?”. In

rformance questions, the
lopment of customized
tness and efficiency of the
OTA User’s Instructions (6/11/99) DAKOTA Introduction - What is DAKOTA?

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

What is DAKOTA?

The DAKOTA (Design Analysis Kit for OpTimizAtion) provides a
interface between your simulator and a variety of iterative metho
DAKOTA was originally conceived as an easy-to-use interface b
and numerical optimization codes, recent versions have been ex
types of iterative analysis. In addition to an abundance of optimi
strategies that it supports, the present version of DAKOTA also i
quantification with nondeterministic propagation methods, param
nonlinear least squares solution methods, and sensitivity analys
parameter study capabilities. Thus, one of the many advantages
is that access to a very broad range of iterative capabilities can
single, relatively simple interface between DAKOTA and your sim
manages interfacing with the iterative methods and strategies, re
difficult and time consuming development burden.

Each of the numerical iterative methods supported by DAKOTA e
code at a series of different design parameter values. DAKOTA,
iterative methods that it supports, can utilize the this series of po
simulation code to answer fundamental engineering questions, s
design?”, “how safe is it?”, or “how much confidence do I have in
addition to providing this environment for answering systems pe
DAKOTA toolkit also provides an extensible platform for the deve
methods and strategies, which can be used to increase the robus

DAK 7

D
In

S

D

In

ems (see[Eldred, M.S.,

at offers a systematic
blems. Should you want
ulator, it will only be

 input and start a new
and syntax allows you
r, the need to learn a
construct of the interface
ethod is eliminated.

through DAKOTA, these
 five components
the interplay of the

tive schemes based on
ate models,
ment of parallelism, etc.
 added as they are
her architecture
ncertainty

d are extensible, both
rough the addition of
ping of variables into
ign, uncertain, and
problem domains.
OTA User’s Instructions (6/11/99) DAKOTA Introduction - What is DAKOTA?

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
iterative analyses for computationally complex engineering probl
1998]).

The DAKOTA toolkit is a flexible problem-solving environment th
way of obtaining iterative solutions to user generated design pro
to try a different type of iterative method or strategy with your sim
necessary to change a relatively few commands in the DAKOTA
analysis. The flexible yet systematic approach to DAKOTA comm
to change between methods and strategies in an efficient manne
completely different style of command syntax and the need to re
each time you want to use a new optimization or other iterator m

Five architectural components define and control the flow of data
are:strategies, methods, variables, responses, andinterfaces. These
define separate areas of flexibility and extensibility.Strategiesmanage
other components and allow you to build sophisticated and adap
method combination and hybridization, management of approxim
incorporation of uncertainty into optimization processes, manage
Other novel approaches to the systems analysis process can be
envisioned and used to leverage the developments within the ot
components.Methods include the major categories optimization, u
quantification, nonlinear least squares, and parameter study, an
through the inclusion of new algorithms within a category, and th
new iterator branches that fit the general model of repeated map
responses through simulation codes.Variables currently include des
state variable specifications for continuous, discrete, and mixed

DAK 8

D
In

S

D

In

ptimization data set),
 residual functions (least
parameter study data sets)

simulation codes, test
n protocols. In the
s into responses
OTA User’s Instructions (6/11/99) DAKOTA Introduction - What is DAKOTA?

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
Responses include function values, gradients, and Hessians (an o
where these functions can be objective and constraint functions,
squares data set), or generic response functions (uncertainty and
depending on the iterator in use. Lastly,interfacesprovide access to
functions, and approximations through a variety of communicatio
DAKOTA architecture,strategies manage howmethods mapvariable
through the use ofinterfaces.

DAK 9

D
In

S

D

In

 run a simple DAKOTA
edure, as outlined in the
onfiguration with the
KOTA has been
A later tutorial example
lel processing mode. If
A with MPI as

 run a sample numerical
w to:

DAKOTA

les, responses, and

ing of the basic operation
our understanding of
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Tutorial

Getting started

In this section you will be given instructions on how to set up and
optimization analysis. It is assumed that the DAKOTA install proc
Installation Guide, has been completed successfully, including c
NPSOL and/or DOT optimization package(s) enabled. Once DA
successfully installed you are ready to proceed with the tutorial.
will show you how to set up and run a DAKOTA analysis in paral
you intend to run this example you will need to configure DAKOT
described inConfiguring with the Message Passing Interface.

The getting started tutorial will proceed by having you set up and
optimization problem in DAKOTA. In this tutorial you will learn ho

• Construct a simple interface between an evaluation code and

• set up a DAKOTA input file including strategy, interface, variab
method specifications

• initiate a DAKOTA run

• interpret a DAKOTA output file

Working through the example should give you a good understand
of DAKOTA. Additional examples, which will allow you to further y

DAK 10

D
In

S

D

In

ck Example,
ful features of

nd as a means of
mple optimization

olume manufacturer of
sheet material that must
ding waste material.
ock sheet material of
r wall is manufactured by a
n be attached to the

ormally go into the
imensions of the end cap
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
DAKOTA, appear in the sections titledTextbook Example, Rosenbro
Cylinder Head Example, Engineering Applications, andSome use
DAKOTA , as well as throughout the text.

A basic optimization problem

As a means of familiarizing new users to the DAKOTA software a
demonstrating some of the capabilities of DAKOTA, a simple exa
problem will be worked. For this example, suppose that a high-v
light weight steel containers wants to minimize the amount of raw
be used to manufacture a 1.1 quart cylindrical-shaped can, inclu
Material for the container walls and end caps is stamped from st
constant thickness. The seal between the end caps and containe
press forming operation on the end caps. The end caps can the
container wall forming a seal through a crimping operation.

Figure 1 Container wall-to-end-cap seal.

For preliminary design purposes, the extra material that would n
container end cap seals is approximated by increasing the cut d

wall

end cap

DAK 11

D
In

S

D

In

d waste associated with
is estimated as 15% of the
cluding waste is

(1)

(2)

t in units of inches,

(3)

is to be minimized. The
 at the conclusion of the
lume constraint
olution) to the area
e volume constraint

, the area objective
ct to satisfaction of

ominal

ntainer

ll area

OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
diameters by 12% and the height of the container wall by 5%, an
stamping the end caps in a specialized pattern from sheet stock
cap area. The equation for the area of the container materials in

or

whereD andH are the diameter and height of the finished produc
respectively. The volume of the finished product is given by

The equation for area is the objective function for this problem; it
equation for volume is an equality constraint; it must be satisfied
optimization problem. Any combination ofD anH that satisfy the vo
produce afeasible solution (although not necessarily the optimal s
minimization problem, and any combination that do not satisfy th
generate aninfeasible solution. Thus, in this optimization problem
function is to be minimized with respect to parametersD andH, subje

A 2

end cap

waste

material

factor

×

end cap

seal

material

factor

×
nominal

end cap

area

 container

wall seal

material

factor

+×
n

co

wa

×=

A 2 1.15() 1.12()πD
2

4
------ 1.05()πDH+=

V πD
2
H

4
---------- 1.1qt() 57.75in

3
qt⁄()= =

DAK 12

D
In

S

D

In

 volume constraint is the
 are the optimal
ore compact and

(4)

ation code be limited to
It is often up to the
 bound constraints.
capability to differentiate
ues. For example, by
lume constraint, it can be
braically possible to
 volume constraint.
fore, to ensure that the
bound constraint of

 positive value forH is
negative. However,

blem if desired.
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
the volume constraint. The area that is a minimum subject to the
optimal area, and the corresponding values for the parametersD andH
parameter values. The optimization problem can be stated in a m
standardized form as

It is important that the equations supplied to a numerical optimiz
generating only physically realizable parameters as optimizers.
engineer to supply these limits, usually in the form of parameter
General purpose numerical optimizers do not typically have the
between physically meaningful and unmeaningful parameter val
observing the equations for the area objective function and the vo
seen that by allowing the diameter,D, to become negative, it is alge
generate relatively small values for the area that also satisfy the
Negative values forD are of course physically meaningless. There
numerically-solved optimization problem remains meaningful, a

 must be included in the optimization problem statement. A
implied since the volume constraint could never be satisfied ifH were

a bound constraint of can be added to the optimization pro

 min 2 1.15() 1.12()πD
2

4
------ 1.05()πDH+

subject to: πD
2
H

4
---------- 1.1qt()– 57.75in

3
qt⁄() 0=

D 0≥

H 0≥

DAK 13

D
In

S

D

In

in Figure 2. The 3-D
he curved line that
ume equality constraint,V.
one of finding the point
igure 2. This point

d height of the final
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
A graphical view of the container optimization problem appears
surface defines the area,A, as a function of diameter and height. T
extends across the surface defines the areas that satisfy the vol
Graphically, the container optimization problem can be viewed as
along the constraint line with the smallest 3-D surface height in F
corresponds to the optimal or minimizing values for diameter an
product.

DAK 14

D
In

S

D

In

.

A accept only inequality
nstraints such as the
esent any equality

 and ,

is satisfied. Given the

8

10

0 g– x() 0≤
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Figure 2 A graphical representation of the container optimization problem

The numerical optimizers that are presently supported by DAKOT
constraints, in a less-than-or-equal-to format, and not equality co
volume constraint in this example. However, it is possible to repr

constraint, such as , with two inequality constraints,

since the only time both inequalities are satisfied is when

2

4

6

0

5

10

15

20
0

100

200

300

400

500

600

700

800

900

D, in.

min.

H, in.

V=1.1qt.

A
, i

n.
2

g x() 0= g x() ≤
g x() 0=

DAK 15

D
In

S

D

In

e optimization problem

(5)

nto a simulator in the
 a general sense. A

t, and compute and output
nd second partial
r for this optimization
the volume constraint

to generateresponses.
t need to be managed via
om DAKOTA into the
from the simulator back to
DAKOTA can be used
ce, and selection of one
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
requirements on the constraint functions and variable bounds, th
can restated as

This statement of the optimization problem will be incorporated i
following sections. The termsimulator is defined within DAKOTA in
simulator is any computer code that can accept variables as inpu
responses in the form of function values and possibly gradient a
derivative (Hessian) information. In terms of the DAKOTA iterato
example,DandHarevariables,and the area objective function, and
functions are contained within the simulator, and are to be used
Bound constraints are handled internally by optimizers and do no
a users interface. The mechanisms for receiving the variables fr
simulator, computing the responses, and passing the responses
DAKOTA comprise theinterface. What remains to be done before
to solve this optimization problem is the construction of this interfa

 min 2 1.15() 1.12()πD
2

4
------ 1.05()2πDH+

subject to: πD
2
H

4
---------- 1.1qt()– 57.75in

3
qt⁄() 0≤

π–
D

2
H

4
---------- 1.1qt() 57.75in

3
qt⁄() 0≤+

D 0 H 0≥,≥

DAK 16

D
In

S

D

In

ks will be covered in

 responsible for
tion of an interface might
e, a simple example
pute values for the area

braic equations using
riables and writing the

e interface and for
e purpose of an
roach will be used

 is given in the section
all approach, the
s. One execution of the
h performs any necessary
theiece Interfacewill
putational, and output
n alternative that
terface format. Example
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
or moremethodsandstrategiesfrom the DAKOTA library. These tas
the following sections.

Constructing the interface

An interface in the DAKOTA environment is a user routine that is
mapping variables into responses. While a practical implementa
include calls to a finite element or finite difference simulation cod
interface will be constructed in this section that will be used to com
objective function and the volume constraint functions from alge
values ofD andH as input variables. Code for reading the input va
output responses is also part of the interface.

DAKOTA offers more than one option for initiating execution of th
performing the input of variables and output of responses. For th
introductory example theThe System Call Application Interface app
to initiate execution of the interface. Another interface possibility
titled The Direct Function Application Interface. For the system c
interface exists as one or more stand-alone executable program
interface reads one set of variables, executes the simulator, whic
calculations, and outputs one set of responses. For this example1-p
be used. For this example the interface will house the input, com
parts of the interface in a single executable. The3-piece Interface is a
can be used to obtain a preprocessor-simulator-postprocessor in

DAK 17

D
In

S

D

In

e given in Figure 3
y.
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
listings of the interface for the container optimization problem ar
through Figure 5 for Fortran, C, and C++ languages, respectivel

Figure 3 Fortran listing of the interface for the container example.
c***
c***
 program container
c***
c***
 integer num_fns,num_vars,req(1:3)
 double precision fval(1:3),D,H
 character*80 infile,outfile,instr
 character*25 valtag(1:3)
 double precision PI /3.14159265358979/

c get the input and output file names from the command line
c using the fortran 77 library routine getarg
 call getarg(1,infile)
 call getarg(2,outfile)

c*************************************
c read the input data from DAKOTA
c*************************************
 open(11,FILE=infile,STATUS=’OLD’)

c get the number of variables and function evaluation requests
 read(11,*)num_vars,instr,num_fns,instr

c get the values of the variables and the associated tag names
 read(11,*)H,instr
 read(11,*)D,instr

c get the evaluation type request for the associated function number
 do 10 i=1,num_fns
 read(11,*)req(i),instr
 10 continue

 close(11)

c**
c compute the objective function and constraint values
c**
 if(req(1).eq.1) fval(1)=0.644*PI*D**2+1.05*PI*D*H
 if(req(2).eq.1) fval(2)=0.25*PI*H*D**2-63.525
 if(req(3).eq.1) fval(3)=-0.25*PI*H*D**2+63.525

DAK 18

D
In

S

D

In rocessing are present in
n the command line for

-piece interface looks

and the variables input
mes can then be accessed
ry routinegetarg in
en file names are not

hen unique name
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

c**
c write the response output for DAKOTA
c**
 valtag(1)=’area’
 valtag(2)=’volume_constraint_1’
 valtag(3)=’volume_constraint_2’

 open(11,FILE=outfile,STATUS=’UNKNOWN’)

 do 20 i=1,num_fns
 if(req(i).eq.1) then
 write(11,’(E22.15,1X,A)’),fval(i),valtag(i)
 endif
 20 continue

 close(11)

 end

The one-piece approach assumes that all file I/O pre and post-p
one callable program or driver routine. File names are supplied o
the interface, e.g. an internal system call by DAKOTA to the one
something like:

system("container variables.in responses.out");

wherecontainer is the simulator executable for this example,
and responses output file names follow on the same line. File na
by the interface using a command line argument procedure (libra
Fortran or the arrayargv in C or C++). While not strictly needed wh
changing, command line retrieval of the file names is required w
assignment (e.g. file tagging) is used.

Figure 4 C language listing of the container simulator example.
#include <stdio.h>
#include <stdlib.h>

DAK 19

D
In

S

D

In
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
/**/
/* container.c - container optimization example */
/**/
void main(int argc, char **argv)
{
FILE *fileptr;
double fval[3],D,H;
int i,num_vars,num_fns,req[3];
char *infile,*outfile,in_str[81];
char *valtag[]={"area\n",
 "volume_constraint_1\n",
 "volume_constraint_2\n"};
const double PI = 3.14159265358979;

/* assign the input and output file names from the command line */
infile = argv[1];
outfile = argv[2];

/******************************/
/* read the input from DAKOTA */
/******************************/
fileptr = fopen(infile,"r");

/* get the number of variables and functions*/
fscanf(fileptr,"%d %80s %d %80s",&num_vars,in_str,&num_fns,in_str);

/* get the values of the variables and the associated tag names */
fscanf(fileptr,"%lf %80s",&H,in_str);
fscanf(fileptr,"%lf %80s",&D,in_str);

/* get the evaluation type request */
for(i=0; i<num_fns; i++)
 fscanf(fileptr,"%d %80s",&req[i],in_str);

fclose(fileptr);

/**/
/* compute the objective function and constraint values */
/**/
 if(req[0]==1)
 fval[0]=0.644*PI*D*D+1.04*PI*D*H;
 if(req[1]==1)
 fval[1]=0.25*PI*H*D*D-63.525;
 if(req[2]==1)
 fval[2]=-0.25*PI*H*D*D+63.525;

/**/
/* write the response output for DAKOTA */

DAK 20

D
In

S

D

In

simulator must be able to
r the purposes of this
ill have the following

tive and constraint
o variables for this

ective function and (2)
t need to be computed by
ues of the variablesDand
sent real values ofD

t three lines are encoded
 each of the three
 lines indicates that a

. Other numbers can be
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
/**/
fileptr = fopen(outfile,"w");

for(i=0; i<num_fns; i++)
 if(req[i]!=0)
 fprintf(fileptr,"%23.15e %s",fval[i],valtag[i]);

fclose(fileptr);

}

For the one-piece interface, the i/o routines associated with the
read and write files in one of the allowable DAKOTA formats. Fo
example the input file generated by DAKOTA for the simulator w
format:

2 variables 3 functions
<double> D
<double> H
1 ASV_1
1 ASV_2
1 ASV_3

The simulator must be able to read this file to compute the objec
function values. The first line of the file indicates that there are tw
optimization problem:DandH, and three functions: (1) the area obj
and (3) the volume constraint functions. Bound constraints do no
the simulator. The second and third lines are used to transmit val
H from DAKOTA to the simulator. The<double> descriptors repre
andH that would appear in an actual simulator input file. The las
requests for the type of computation that is to be associated with
functions. The value of1 in first character position of the last three
function value is being requested for each of the three functions

DAK 21

D
In

S

D

In

me combination of the
dOTA File Data
more information.
 by DAKOTA and any

omputed internally by
SV on the last three

ion numbers1 through3
he functions labeled
r simulator, or
ings, respectively. It
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
used to make requests for gradient or Hessian information, or so
function, gradient, and Hessian information, see the section titleDAK
Formats and specifically the subsectionActive set vector control for
However, for this example, only function values will be requested
gradient information needed by the numerical optimizer will be c
DAKOTA through finite differencing. The strings beginning with A
lines of the file are the default tag names for each function. Funct
in the on the end positions of the last three lines correspond to t
fval(1) throughfval(3) in the Fortran listing for the containe
functions labeledfval[0] throughfval[2] in the C and C++ list
is also possible to assign tag names to these requests.

Figure 5 C++ listing of the container optimization example
#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>

//**
// container.C - C++ container optimization example
//**

int main(int argc, char** argv)
{

 //******************************
 // read the input from DAKOTA
 //******************************
 fstream fin(argv[1],ios::in);

 // get the number of variables and functions
 int num_vars, num_fns;
 char in_str[81];
 fin >> num_vars >> in_str >> num_fns >> in_str;

 // get the values of the variables and the associated tag names
 double D,H;
 fin >> H >> in_str;

DAK 22

D
In

S

D

In
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
 fin >> D >> in_str;

 // get the evaluation type request
 int* req = new int [num_fns];
 int i;
 for(i=0; i<num_fns; i++) {
 fin >> req[i];
 fin.ignore(256, ’\n’);
 }

 fin.close();

 //**
 // compute the objective function and constraint values
 //**
 double *fval = new double [num_fns];
 const double PI = 3.14159265358979;
 if(req[0]==1)
 fval[0]=0.644*PI*D*D+1.04*PI*D*H;
 if(req[1]==1)
 fval[1]=0.25*PI*H*D*D-63.525;
 if(req[2]==1)
 fval[2]=-0.25*PI*H*D*D+63.525;

 //**
 // write the response output for DAKOTA
 //**
 fstream fout(argv[2],ios::out);
 fout.precision(15);
 fout.setf(ios::scientific);
 fout.setf(ios::right);
 char *val_tag[]= {"area\n",
 "volume_constraint_1\n",
 "volume_constraint_2\n"};

 for(i=0; i<num_fns; i++)
 if(req[i]=1)
 fout << setw(23) << fval[i] << " " << val_tag[i];

 fout.close();

 return 0;
}

DAK 23

D
In

S

D

In

 and/or constraint
 example there is one
tions. Requests for a
ction request is
2) andreq(3) ,
s compute the
mpute. The objective
es are stored in

ation request (stored in
n values. Any gradient
puted internally by
ulator, thereby
ability to compute
 the capability to make
izer. Such an interface

requests for gradient and
rsions of the interface

at for the container

s requested in the
es of each associated
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
In this examplenum_fns represents the total number of objective
function evaluations in the model. For the container optimization
area objective function and two volume inequality constraint func
function evaluation are stored in variablereq(i); the objective fun
stored inreq(1) and the volume constraint requests are stored inreq(
respectively, for the Fortran listing. A value of1 for req(i) indicate
associated function evaluation, while a value of0 indicates do not co
function value is stored infval(1) and the volume constraint valu
fval(2) andfval(3) , respectively. For this example the evalu
req(i)) will consist strictly of requests or nonrequests for functio
or Hessian information needed by the numerical optimizer is com
DAKOTA through finite differencing and additional calls to the sim
relieving you of this burden. However, if the interface has the cap
gradient and/or Hessian information internally, DAKOTA also has
requests for this information if it is needed by the numerical optim
could contain branching and looping structures to handle specific
Hessian information. However, the limited complexity of these ve
are suitable for this simple example.

The simulator-to-DAKOTA response output has the following form
optimization problem:

<double> area
<double> volume_constraint_pos
<double> volume_constraint_neg

This file contains one line for each of the function values that wa
simulator input file. The <double> descriptors represent real valu

DAK 24

D
In

S

D

In

hey are in fact ignored
 in the same as the order
readability of the output

arated from the numeric
ast one character (A-Z or
d Hessian information is

rmation that describes
d
g what strategy,
OTA are to be used to
ot conflict with the
container optimization
ter is treated as a
e input file to indicate the
tegy , method ,
specification is not
nd.

\
\

OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
function tag (area, for example). The function tags are optional. T
by DAKOTA, and the order of the numeric data is assumed to be
of requests in the input file. Function tags do however increase the
files. The only requirements for function tags is that they be sep
data by a blank space or new line character, that they contain at le
a-z), and that they contain no blank spaces. Output of gradient an
also possible. SeeResults file format for more information.

Creating a DAKOTA input file

A DAKOTA input file is a collection of character and numeric info
the problem to be solved. For this example, the file will be name
dakota_container.in . The input file contains fields describin
method, variables, responses, and interface components of DAK
solve the problem. The contents of the DAKOTA input file must n
problem as defined in the simulator. A DAKOTA input file for the
problem is given in Figure 6. Any line beginning with a ‘#’ charac
comment. Presence of the backslash (\) character is required in th
continuation of a major specification (interface , variables , stra
or response) onto the next line of the file. The last line of each
terminated with a ’\’ character since it marks the specification’s e

Figure 6 DAKOTA input file for the container optimization example.
Interface specification

interface,
 application, system
 analysis_driver = ’container’

Variables specification

DAK 25

D
In

S

D

In

\
\

\
\

\

\

\
\
\

\
\

\
\

cification is made.
and

\

ecified as the analysis

example a
ne optimizer will be
used for this analysis is

od specification. The
ntial quadratic
on. For this method it is
ous first and second
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
variables,
 continuous_design = 2
 cdv_descriptor ’H’ ’D’
 cdv_initial_point 4.5 4.5
 cdv_lower_bounds 0.0 0.0

Strategy specification
strategy,
 single_method

Method specification
method,
 npsol_sqp

Responses speification
responses,
 num_objective_functions = 1
 num_nonlinear_constraints = 2
 numerical_gradients
 method_source dakota
 interval_type central
 fd_step_size = 0.001
 no_hessians

In the first four lines ofdakota_container.in the interface spe
The system call application interface is specified with the comm

application, system

andcontainer , the name of the executable simulator file, is sp
driver on the following line.

Next, the strategy and method specifications are made. For this
single_method strategy is specified, which means that only o
used to perform the analysis. The numerical optimizer that will be
thenpsol_sqp optimizer. This optimizer is selected in the meth
NPSOL library provides an implementation of the SQP or seque
programming method for nonlinearly constrained local optimizati
assumed that the objective and constraint functions have continu

DAK 26

D
In

S

D

In

a single local optimal
re than one local
en though it may not be

s are made. For this
is set with the

\

e any real value within
mization variables (Dand

\

descriptor. This is
he optimization
 lower bounds are

he response specification
ctive functions is set
constraints (the volume

e response
e used by the numerical
TA using a step size of
at DAKOTA asks for and
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
partial derivatives. It is also implied that the problem possesses
value. However, this method can be applied to problems with mo
optimum, if the locally optimal value is considered to be of use ev
the global optimum.

Following specification of the method, the variables specification
example, the number of design variables is equal to2 and this count
command

continuous_design = 2

wherecontinuous_design variables have been specified sinc
the bounds is a possible solution. Next the name tags for the opti
H) are set with the command

cdv_descriptor ’H’ ’D’

wherecdv_descriptor stands for continuous design variable
followed by thecdv_initial_point to be used at the start of t
analysis, and then the values of the variable bounds. Since only
specified, the problem is unbounded above.

After declaring the variables their associated specifications are, t
is made in filedakota_container.in . First, the number of obje
to 1 (for the area objective function) and the number of nonlinear
constraints in this example) is set to2. The following four lines in th
specification state that central finite difference gradients are to b
optimizer, and that these gradients are to be computed by DAKO
0.001 . These specifications are necessary since they control wh

DAK 27

D
In

S

D

In

ively, and what internal
tput to generate the
ince the interface
rical optimizer
n.

ility to handle nonlinear
t_sqp methods

change between installed
e achieved by simply
t file with one of the
ods for additional

ng DAKOTA for the
e the example is to place
, in a directory

test is one such
ble with the UNIXln

cutable has not been
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
expects in the simulator input and response output files, respect
computations are to be performed on the simulator response ou
gradient approximation. The commandno_hessians is specified s
will not return the Hessian information, rather thenpsol_sqp nume
generates its own internal gradient-based Hessian approximatio

Thenpsol_sqp optimizer was selected because it has the capab
objective and constraint functions. Thedot_mmfd , dot_slp , anddo
also possess these capabilities. DAKOTA can be used to easily
numerical optimizers. For the DOT optimizer methods this can b
replacing the method specificationnpsol_sqp in the DAKOTA inpu
three appropriate DOT methods. SeeNPSOL Method andDOT Meth
information.

Running DAKOTA

Once the interface has been constructed, the process of executi
example problem is relatively simple. One possible way to execut
dakota_container.in and the interface executable,container
with a path to the DAKOTA executable. The directory $DAKOTA/
directory. It is also possible to create a link to the dakota executa
command in some other directory. If the container simulator exe
created it will be necessary to do so with a command such as

f77 -o container container.f

for Fortran, or
cc -o container container.c

DAK 28

D
In

S

D

In

 system. What is
imulators, with the name
the files are located in

mpt for the container

t should print to the
ted to a file using the

utput will be discussed
 discussion.

timization example. The
d
OTA input file or

e that begins with
n about the function
everal of the function

 omitted from this listing
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
for C, or

CC -o container container.C

for C++. The actual compile commands may vary from system to
important is that an executable, of one of the preceding example s
container exists in the working directory for this example. Once
an appropriate directory DAKOTA is executed from the UNIX pro
example with the command:

dakota -i dakota_container.in

DAKOTA should take a few seconds to load and execute. Outpu
standard output device. The DAKOTA output can also be redirec
syntax

dakota -i dakota_container.in > dakota.out

wheredakota.out can be replaced by any desired file name. O
in the following section. SeeRunning DAKOTA for a more detailed

Interpreting the results

Figure 7 shows a partial listing of the output for the container op
first several lines, down to the line that reads "Running Single Metho
Strategy... ", reflect information that was specified in the DAK
during DAKOTA installation. The lines that follow, down to the lin
"NPSOL exits with INFORM code = 0 ", contain informatio
and gradient evaluations that have been requested by NPSOL. S
evaluations and gradient-related function evaluations have been
for brevity.

DAK 29

D
In

S

D

In

and constraint function
aluation
tags andH,
gfn, and the
ndnln_con2 ,
itially violated (< 0)
r, the numerical optimizer
al for this example.

ontent of the system call

nd/var/tmp/

nging to the
s, respectively.
d as soon as the simulator-

cify that the i/o files are
 tag extensions, seeFile

 values is the line
not to be confused
rical optimization
TA-to-simulator request,
lator for the objective and
utput line indicates
ning values of1 indicate
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
The values of the optimization variables and the initial objective
evaluations are listed following the line that reads "Begin Function Ev
1". The values of the optimization variables are labeled with the D
respectively, the value of objective function is labeled with the taobj_
values of the volume constraint are labeled with the tagsnln_con1 a
respectively. Note that one of the constraint function values is in
because the initial design parameters were not feasible. Howeve
has the capability to find a design that is both feasible and optim

Between the optimization variables and the function values the c
to the simulator is displayed as " (container /var/tmp/aaaa0041c /var/tmp/

baaa0041c) " , with container being the name of the simulator a
aaaa0041c and/var/tmp/baaa0041c being the path and names belo
DAKOTA-to-simulator input and simulator-to-DAKOTA output file
Temporary files have been used in this case and these are delete
to-DAKOTA output file is read. However, it is also possible to spe
to be saved under user supplied names with DAKOTA generated
saving andFile tagging for more information.

Just preceding the output of the objective and constraint function
"Active set vecto r = { 1 1 1 } ". Theactive set vectoris
with the active constraint set that is sometimes defined for nume
algorithms. For this case the active set vector is used for a DAKO
and indicates the type of request that has been made to the simu
constraint function evaluations. The first value of1 on this DAKOTA o
that the simulator is to evaluate the objective function. The remai

DAK 30

D
In

S

D

In

 Had a value of0
by the simulator as a do-
ction. The values

he first character position
bed in the section titled

d DAKOTA computes
aluation requests to the
ave been included in the

te
e resulting objective

ing function evaluation

in the DAKOTA output
 DAKOTA-to-
AKOTA is supplying to

d constraints. The values
 of a function evaluation,
numerical optimizer,
 values are computed by

t Hessian information.
ere being supplied

would be1+3=4 or if
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
that the simulator is to evaluate the volume constraint functions.
appeared in any of these positions it would have been interpreted
not-evaluate request for the respective objective or constraint fun
contained in this active set vector correspond to the numbers in t
of the last three lines of the DAKOTA-to-simulator input file descri
Constructing the interface.

Since finite difference gradient computations have been specifie
their values, in part by automatically making additional function ev
simulator. Examples of the gradient-related function evaluations h
sample output, beginning with the line that reads ">>>>> Dakota fini
difference evaluation for x[1] + h: ". A sample of th
and constraint function values and their gradients is shown follow
5 beginning with the line ">>>>> Total response returned to
iterator: ". Here, another type of active set vector is displayed
file. The line "Active set vector = { 3 3 3 } " displays a
numerical-optimizer active set vector. It indicates the values that D
the numerical optimizer associated with the objective function an
of 3 are composite combinations used to indicate that the results
1, and a DAKOTA gradient computation,2, are being supplied to the
for each of the objective and constraint functions. The composite
simple addition (1+2=3). Some numerical optimizers also reques
For this case a code of4 is used. Thus, if the numerical optimizer w
with function value and Hessian information the active set value

DAK 31

D
In

S

D

In

plied the active set value
ction.

< Single
e optimization
e function, and constraint
straint functions are only
he DAKOTA results are
ummary of the NPSOL
d in the output.
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
function value, gradient and Hessian information were being sup
would be1+2+3=7, for the associated objective or constraint fun

The final lines of the DAKOTA output, beginning with the line "<<<<
method iteration completed ", summarize the results of th
analysis. The best values of the optimization parameters, objectiv
equations are output. Since the analysis is approximate the con
satisfied to within some small tolerance of zero for this example. T
followed by a summary of the NPSOL analysis. A more detailed s
analysis is contained in either filefort.9 or file ftn09 , as specifie

Figure 7 Example DAKOTA output
MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = numerical
hessianType = none
Numerical gradients using 0.1% central differences
to be calculated by the dakota finite difference routine.
Optimality Tolerance = 0.0001
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
 See pp. 21-22 of NPSOL manual for description.
Derivative Level = 3
Running MPI executable in serial mode.
Running Single Method Strategy...

Begin Dakota finite difference routine

>>>>> Initial map for non-finite-differenced portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
 4.5000000000e+00 H

DAK 32

D
In

S

D

In
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
 4.5000000000e+00 D

(container /var/tmp/aaaa0041c /var/tmp/baaa0041c)
Removing /var/tmp/aaaa0041c and /var/tmp/baaa0041c

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
 1.0776762359e+02 obj_fn
 8.0444076396e+00 nln_con1
 -8.0444076396e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
 4.5045000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/caaa0041c /var/tmp/daaa0041c)
Removing /var/tmp/caaa0041c and /var/tmp/daaa0041c

Active response data for function evaluation 2:
Active set vector = { 1 1 1 }
 1.0783442171e+02 obj_fn
 8.1159770472e+00 nln_con1
 -8.1159770472e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[1] - h:

Begin Function Evaluation 3

Parameters for function evaluation 3:
 4.4955000000e+00 H
 4.5000000000e+00 D

(container /var/tmp/eaaa0041c /var/tmp/faaa0041c)
Removing /var/tmp/eaaa0041c and /var/tmp/faaa0041c

Active response data for function evaluation 3:
Active set vector = { 1 1 1 }
 1.0770082548e+02 obj_fn
 7.9728382320e+00 nln_con1
 -7.9728382320e+00 nln_con2

DAK 33

D
In

S

D

In
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

>>>>> Dakota finite difference evaluation for x[2] + h:

Begin Function Evaluation 4

Parameters for function evaluation 4:
 4.5000000000e+00 H
 4.5045000000e+00 D

(container /var/tmp/gaaa0041c /var/tmp/haaa0041c)
Removing /var/tmp/gaaa0041c and /var/tmp/haaa0041c

Active response data for function evaluation 4:
Active set vector = { 1 1 1 }
 1.0791640170e+02 obj_fn
 8.1876180243e+00 nln_con1
 -8.1876180243e+00 nln_con2

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
 4.5000000000e+00 H
 4.4955000000e+00 D

(container /var/tmp/iaaa0041c /var/tmp/jaaa0041c)
Removing /var/tmp/iaaa0041c and /var/tmp/jaaa0041c

Active response data for function evaluation 5:
Active set vector = { 1 1 1 }
 1.0761892743e+02 obj_fn
 7.9013403937e+00 nln_con1
 -7.9013403937e+00 nln_con2

>>>>> Total response returned to iterator:

Active set vector = { 3 3 3 }
 1.0776762359e+02 obj_fn
 8.0444076396e+00 nln_con1
 -8.0444076396e+00 nln_con2
 [1.4844025288e+01 3.3052696308e+01] obj_fn gradient
 [1.5904312809e+01 3.1808625618e+01] nln_con1 gradient
 [-1.5904312809e+01 -3.1808625618e+01] nln_con2 gradient

DAK 34

D
In

S

D

In
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

.

.

.

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:
 4.9556729812e+00 H
 4.0359108491e+00 D

(container /var/tmp/adaa0041c /var/tmp/bdaa0041c)
Removing /var/tmp/adaa0041c and /var/tmp/bdaa0041c

Active response data for function evaluation 40:
Active set vector = { 1 1 1 }
 9.8930418512e+01 obj_fn
 -1.2698647482e-01 nln_con1
 1.2698647482e-01 nln_con2

>>>>> Total response returned to iterator:

Active set vector = { 3 3 3 }
 9.9062468783e+01 obj_fn
 1.8074075570e-10 nln_con1
 -1.8074075570e-10 nln_con2
 [1.3326473792e+01 3.2694282247e+01] obj_fn gradient
 [1.2818642490e+01 3.1448402789e+01] nln_con1 gradient
 [-1.2818642490e+01 -3.1448402789e+01] nln_con2 gradient

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
 for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 40 total (40 new, 0 duplicate)
<<<<< Best design parameters =
 4.9556729812e+00 H
 4.0399507999e+00 D
<<<<< Best objective function =
 9.9062468783e+01

DAK 35

D
In

S

D

In

oblem solving capability,
 time you could spend
AKOTA input file, since
ndor codes, application
t in DAKOTA. In this
sing interface will be
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
<<<<< Best constraint values =
 1.8074075570e-10
 -1.8074075570e-10
Run time from MPI_Init to MPI_Finalize is 6.0880220000e+00 seconds

 NPSOL --- Version 4.06-2 Nov 1992
 ==

Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
 0 3 0.0E+00 1 1.07767624E+02 1.1E+01 1.5E+00 1 0.0E+00 F FF
 1 1 1.0E+00 2 9.95643509E+01 4.2E+00 1.3E+00 1 0.0E+00 F FF
 2 1 1.0E+00 3 9.91019314E+01 6.5E-01 3.8E-01 1 0.0E+00 F TF
 3 1 1.0E+00 4 9.90642035E+01 1.3E-01 9.4E-02 1 0.0E+00 F TF
 4 1 1.0E+00 5 9.90624728E+01 5.2E-03 3.6E-03 1 0.0E+00 T TF
 5 1 1.0E+00 6 9.90624688E+01 6.4E-06 1.8E-04 1 0.0E+00 T TF
 6 1 1.0E+00 7 9.90624688E+01 1.9E-08 4.1E-06 1 0.0E+00 T TF
 7 0 1.0E+00 8 9.90624688E+01 2.6E-10 5.2E-12 1 0.0E+00 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value = 99.06247

Some useful features of DAKOTA

DAKOTA has many features that can be used to enhance your pr
including ones that can be used to reduce the overall amount of
running an analysis. Some of these features are implicit to the D
this file allows you to readily change between analysis types, ve
problems, etc. Other useful time-saving features are also presen
section examples of the restart capability and the parallel proces
discussed.

DAK 36

D
In

S

D

In

ire multiple calls to
 may want to conduct the
is would be costly if the
and system failures could
rds enough of the input

ime-inexpensive restart is

ove container example
nction evaluations are
20 successful iterations.
e command

t contains input and
to essentially "pick up

enty simulator calls
simulator calls as usual,

cussion of the restart
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
Restarting DAKOTA

DAKOTA was developed for solving problems that typically requ
computationally expensive simulation codes. In some cases you
same optimization, but to a finer final convergence tolerance. Th
entire optimization analysis had to be repeated. Power outages
also result in costly delays. However, DAKOTA automatically reco
and response data from calls to your simulation code so that a t
possible.

As an example of the DAKOTA restart capability, consider the ab
again. For the sake of this example, pretend that the simulator fu
expensive and that the DAKOTA run unexpectedly aborted after
Assuming that the original DAKOTA analysis was started with th

dakota -i dakota_container.in

DAKOTA will automatically generate a file nameddakota.rst tha
response information from the aborted run. To instruct DAKOTA
where it left off" execute the command

dakota -i dakota_container.in -r -s 20 -w dakota_new.rst

This command tells DAKOTA to recover the results of the first tw
from the restart file and then proceed with the analysis by making
writing the new restart filedakota_new.rst . A more in depth dis
capability with additional features is given inRestart Management.

DAK 37

D
In

S

D

In

r of network-connected
for a DAKOTA analysis
uted processing
ported by DAKOTA,
 the simulator function
his is that many of these
r which can be distributed
sependent simulator
be increased by as much
on each processor. For
rs are available to
 for an individual

onds or less for modern
 is a negligible in
tems with fewer thann

s built into its
uld benefit from making
 with the addition of
anges to the command
at have their own
abilities associated with
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
The parallel interface

If you have more than one processor available, such as a cluste
workstations or a multi-processor, then the solution time required
can often be substantially reduced through use of parallel distrib
techniques. For many of the optimization and other methods sup
parallel processing can dramatically reduce analysis times when
evaluations are computationally expensive. The reason behind t
methods contain at least some independent calls to the simulato
between processors on every iteration step. If a given method han ind
calls at every iteration step then the DAKOTA analysis speed can
as a factor ofn by running multiple instances of the simulator, one
maximum speed increase, it has been assumed that at leastn processo
DAKOTA for simulator evaluations and that the computation time
simulator call is suitably high (typically on the order of a few sec
workstation clusters) so that interprocessor communication time
comparison. Performance increases can still be obtained for sys
processors.

DAKOTA has been developed with parallel processing capabilitie
framework. Thus, if you have a new or existing application that co
parallel simulator calls, DAKOTA allows you to exploit parallelism
only a few commands to the dakota input file and some minor ch
line. DAKOTA can also be used in conjunction with simulators th
parallel capabilities. For a complete description of the parallel cap
DAKOTA seeExploiting Parallelism.

DAK 38

D
In

S

D

In

ptimization algorithms
analysis using parallel
nfigured with the MPI
erface. Here, the
ed to allow parallel
ther examples of
rallelism.

an initialization phase
the computation of a
arch along the established
ct to any constraints that
approximating the second
onvergence check. There
ithm. However, not all
 fact that the simulator

ximation and the gradient
bjective and constraint
sed to compute the search
nt estimate of the
lem is only an
 thus, the overall
n. The search direction

ffort expended is usually
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
This section will explain where parallelism is exploited in typical o
and show how to set up and run a simple DAKOTA optimization
processing techniques. It is assumed that DAKOTA has been co
package as described inConfiguring with the Message Passing Int
previously defined container optimization example will be extend
processing of the finite difference gradient computations. For fur
incorporating parallelism into a DAKOTA analysis seeSpecifying Pa

Gradient based local optimization algorithms typically consist of
followed by an iterative phase, where each iteration consists of:
search direction in the multi-dimensional parameter space, a se
direction for a sufficient decrease in the objective function (subje
may be present), a gradient computation, an update to a matrix
partial derivatives (Hessian) of the constrained objective, and a c
are many opportunities to exploit parallelism in this type of algor
these opportunities would turn out to be productive in light of the
calls usually dominate the overall computational effort.

The search direction computation is based on the Hessian appro
from the previous iteration or from the initialization phase. The o
function values, gradients, and the Hessian approximation are u
direction. This direction points to the minimum value of the curre
optimization problem that satisfies the constraints. This subprob
approximation to the actual nonlinear optimization problem, and
optimization algorithm must proceed iterative manner to a solutio
computation is based on linear algebra and the computational e

DAK 39

D
In

S

D

In

also holds true for other
o the Hessian
ization algebra is not
eters is huge and the
elopment of this type of
the optimizer. For these
OTA. However, it is
hould the need arise.

lel processing is where
 For gradient-based
radient computation
 for the constraint and
the gradient is computed

t is an integral part of the
n can be computed on

straint function values are
 differences are used in

ed simulator evaluations
imulator evaluations, this

sy. The container
tainer simulator function
of example. The general
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
very small in comparison to the simulator calls. This conclusion
parts of the optimization algorithm algebra, such as the update t
approximation. The use of parallel processing to solve the optim
typically advantageous unless the number of optimization param
simulator function evaluations are relatively inexpensive. The dev
parallelism is also strongly tied to the internal data structures of
reasons, this form of parallelism is not directly supported by DAK
possible to link an optimizer with these capabilities to DAKOTA s

The part of the problem where it is advantageous to utilize paral
multiple calls to the simulator evaluator can be made in parallel.
optimization, this opportunity occurs during the line search and g
steps. During these steps both function and gradient information
objective functions are computed. For some types of line search,
directly after the completion of the line search. For other cases i
line search. For either type of line search, the gradient informatio
additional processors at the same time as the objective and con
computed. For the container optimization example if central finite
the gradient computations, then an additional four gradient-relat
can be performed on four additional processors. For expensive s
would result in a maximum speed increase of a factor of five.

Enabling parallel optimization capabilities in DAKOTA is quite ea
optimization problem will be used as an example. While the con
calls are quite inexpensive in actuality, it is used here for the sake

DAK 40

D
In

S

D

In

 follow along the same

put code for serial and
e interface to DAKOTA
he current version of
 interface-to-DAKOTA
ade. However, it may be
 read attempt will fail.
unt of output, when a

on and output operations,
KOTA has the capability
 interface-to-DAKOTA
 entirely by making
pproach used here is to
orary file, and when all
or rename it to the file
sed inSystem call

However, care must be
name. For the container
ach iteration. One
r more characters to the
ould be unlikely, there
lready in use somewhere
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
set up for a simulator with expensive function evaluations would
lines and the output obtained would be much the same.

No changes are necessary between the DAKOTA to interface in
parallel analyses. Some minor changes may be necessary for th
output code for the parallel analysis. The reason for this is that t
DAKOTA operating in parallel mode polls for the existence of the
output file and once its existence is detected a read attempt is m
that the interface is not finished writing this file and therefore the
This condition can occur, for example, when there is a large amo
computationally expensive interface alternates between calculati
or when there are write delays due to heavy system loading. DA
to recover from up to ten failed read attempts of this type on any
input file, but the potential for this condition can often be avoided
some simple changes to the simulator output procedures. The a
write the simulator to DAKOTA output to a uniquely named temp
the output has been written and this file has been closed, move
name stored inoutfile . Other possibilities exist, and are discus
synchronization.

The temporary file name can be generated in a variety of ways.
taken so that each simulator that is in operation uses a different
example, that would require having five different file names on e
approach to generating unique file names would be to add one o
name stored inoutfile . However, although such an occurrence w
is no guarantee that this would produce file names that are not a

DAK 41

D
In

S

D

In

ng scratch files in Fortran

 replaced by

sion. Write the output

n the$DAKOTA/
ics platforms, which do
an alternative mixed

and
 will need to enter
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
else. Another approach would be to obtain a unique file name usi
or from the C-library functiontmpnam in C or C++.

For the Fortran version theopen statement the listing in Figure 3 is

 open(11,STATUS=’SCRATCH’)
 inquire(11,NAME=tmpfile)

where tmpfile is a character variable of the appropriate dimen
data to this file and replace theclose statement inFigure 3 with

 close(unit=11,STATUS=’KEEP’)

Thetmpfile is moved tooutfile with the statements

 sysvar = "mv " // tmpfile // " " // outfile
 call system(sysvar)$DAKOTA/test/container_p.f

The code for the parallel version is located in filecontainer_p.f i
test/ directory. This version is not compatible with silicon graph
not allow closing a scratch file withSTATUS=’KEEP’ . For this case
language version that callstmpnam is located in filescontainer_p2.f
tempnm.c. To compile the Fortran versioncontainer_p.f you
something like

f77 -o container_p container_p.f

or for the mixed language version
cc -c tempnm.c
f77 -o container_p container_p2.f tempnm.o

DAK 42

D
In

S

D

In

ith the function call

osed according to
sing a system
c and
. To compile use
ns.

the changes discussed. In
 Interface can be
e noted for problems that
ure due to the race
e significant delays can
e file and its completion,
r use in a multi-thread
 call totmpnam may
 available. For this case
r the 3-piece interface
ion see the discussion in

uster of network-
nly a few changes are

igure 6. The name
iner_p , the

ary mpi
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
For the C and C++ versions a temporary file name is obtained w

tmpnam(tmpfile);

The filetmpfile is opened, response data is written, and it is cl
standard C or C++ conventions. The file is then moved tooutfile u
function call. The C and C++ versions are stored in filescontainer_p.
container_p.C in the$DAKOTA/test/ directory, respectively
commands similar to those given for the serial C and C++ versio

These files are the same as the serial versions, with exception to
the event that the simulator code is not directly accessible, the3-piece
used to incorporate the above file renaming strategy. It should b
execute as fast as the container example, it is unlikely that a fail
condition would occur in actuality. However, in any problem wher
occur between the creation of the interface-to-DAKOTA respons
such a strategy is necessary. Also, if the simulator is compiled fo
environment then thesystem call in the Fortran version and the C
not be suitable on some platforms unless re-entrant versions are
some other method should be used to avoid the race condition o
could be used. For other approaches to avoiding the race condit
System call synchronization.

If the parallel container optimization example is to be run on a cl
connected workstations in master-slave mode under MPI, then o
necessary to the DAKOTA input filedakota_container.in in F
of the analysis driver in the interface specification must be set toconta
name of the parallel simulator executable. The commandparallel_libr

DAK 43

D
In

S

D

In

arallel communication
ethod specification

n evaluations. These
r_p.in .

.

n makes use of
ch, tagged file names

the interface are running
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
must be set in the strategy specification to request MPI as the p
handler, andevaluations asynchronous must be set in the m
to enable distributed parallel computation of the simulator functio
changes are shown in Figure 8 and are stored in filedakota_containe

Figure 8 DAKOTA input file for the parallel container optimization example
Interface specification
 interface, \
 application, system \
 analysis_driver = ’container_p’

Variables specification
 variables, \
 continuous_design = 2 \
 cdv_descriptor ’H’ ’D’ \
 cdv_initial_point 4.5 4.5 \
 cdv_lower_bounds 0.0 0.0

Strategy specification
 strategy, \
 single_method \
 parallel_library mpi

Method specification
 method, \
 npsol_sqp \
 evaluations asynchronous

Responses speification
 responses, \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \
 method_source dakota \
 interval_type central \
 fd_step_size = 0.001 \
 no_hessians

Another possibility for the avoidance of the file read race conditio
DAKOTA file File taggingand UNIX shell scripting. For this approa
are used in to eliminate write conflicts when multiple instances of

DAK 44

D
In

S

D

In

hell scripts are used to
nces of the interface,
by adding the commands

\

driver specification

Figure 5 is used with the
ure 9.
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
in parallel, and in the naming of temporary working directories. S
actually create temporary working directories for individual insta
which eliminates the read race condition. File tagging is enabled

parameters_file= ’container.in’ \
results_file= ’container.out’ \
file_tag

under theinterface specification in Figure 8, and the analysis
becomes

analysis_driver = ’container.script’ \

One of the serial container executables listed in Figure 3 through
shell scripting approach. The shell script file listing is given in Fig

Figure 9 UNIX shell script file for parallel DAKOTA.
#! /bin/csh -f
$argv[1] is container.in.(fn_eval_num) FROM Dakota
$argv[2] is container.out.(fn_eval_num) returned to Dakota

create a unique temporary directory using $argv[1]
set num = ‘echo $argv[1] | cut -c 14-‘
mkdir workdir.$num

#make workdir.$argv[1] the current working directory
cp $argv[1] workdir.$num
cd workdir.$num

#run the container optimization interface from workdir.$argv[1]
../container $argv[1] $argv[2]

#move the completed output file to the dakota working directory
mv $argv[2] ../.

#remove the temporary working directory
cd ..
rm -rf workdir.$num

DAK 45

D
In

S

D

In

put file for stored
tory. Other parallel
arallelism.

oper environment. To
nter the command

our system. For a more
t results for the

rallel results are much
nes indicating that
e simulator function

 example a total of six
AKOTA, and the remaining
ions when a request is
struct MPI to use one of
t in itself computationally
he simulator function
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
The shell script is store in filecontainer.script the DAKOTA in
in file dakota_container_pss.in in the$DAKOTA/test direc
interface possibilities exist within DAKOTA, seeImplementation of P

To execute DAKOTA in parallel mode it must be run within the pr
run on a workstation cluster under MPI, for example, you might e

mpirun -np 5 dakota -i dakota_container.in > dakota_out

The exact command would depend on how MPI is installed on y
detailed discussion seeRunning a parallel DAKOTA job . The outpu
Fortran version ofcontainer_p are shown in Figure 10. The pa
the same as the serial results. The output file contains several li
DAKOTA is being run in a master-slave parallel mode and that th
evaluations are being distributed over the slave servers. For this
processors are used. One processor acting as the master runs D
processors act as slave servers by conducting simulator evaluat
made. If the number of processors is limited it is also possible in
the processors as both a master and slave. Since DAKOTA is no
expensive the processor can be shared between DAKOTA and t
evaluation without much performance loss.

Figure 10 Sample output results for a parallel DAKOTA run
MPI initialized with 6 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = numerical
hessianType = none
Numerical gradients using 0.1% central differences
to be calculated by the dakota finite difference routine.
Optimality Tolerance = 0.0001

DAK 46

D
In

S

D

In
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
 See pp. 21-22 of NPSOL manual for description.
Derivative Level = 3
Running MPI executable in parallel master-slave mode.
numSlaveServers = 5 procsPerAnalysis = 1 procRemainder = 0 parallelismLevel = 1
Running Single Method Strategy...

Begin Dakota finite difference routine

>>>>> Initial map for non-finite-differenced portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
 4.5000000000e+00 H
 4.5000000000e+00 D

(Parallel job 1 added to message passing queue)

>>>>> Dakota finite difference evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
 4.5045000000e+00 H
 4.5000000000e+00 D

(Parallel job 2 added to message passing queue)

.

.

.

>>>>> Dakota finite difference evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
 4.5000000000e+00 H
 4.4955000000e+00 D

(Parallel job 5 added to message passing queue)

DAK 47

D
In

S

D

In
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Synchronizing 5 asynchronous evaluations.
First pass: num_sends = 5
Master assigning fn. evaluation 1 to server 1
Master assigning fn. evaluation 2 to server 2
Master assigning fn. evaluation 3 to server 3
Master assigning fn. evaluation 4 to server 4
Master assigning fn. evaluation 5 to server 5
Waiting on all jobs.

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
 1.0776762359e+02 obj_fn
 8.0444076396e+00 nln_con1
 -8.0444076396e+00 nln_con2

Active response data for function evaluation 2:
Active set vector = { 1 1 1 }
 1.0783442171e+02 obj_fn
 8.1159770472e+00 nln_con1
 -8.1159770472e+00 nln_con2

.

.

.
Begin Function Evaluation 40

Parameters for function evaluation 40:
 4.9556729812e+00 H
 4.0359108491e+00 D

(Parallel job 40 added to message passing queue)

Synchronizing 5 asynchronous evaluations.
First pass: num_sends = 5
Master assigning fn. evaluation 36 to server 1
Master assigning fn. evaluation 37 to server 2
Master assigning fn. evaluation 38 to server 3
Master assigning fn. evaluation 39 to server 4
Master assigning fn. evaluation 40 to server 5
Waiting on all jobs.

Active response data for function evaluation 36:

DAK 48

D
In

S

D

In

is that lends well to
lso can be run in a
n evaluations inherent in
genetic algorithms of
 can be obtained in a
luations, due to the

thm. A complete list of
n inpecifying
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Tutorial

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
Active set vector = { 1 1 1 }
 9.9062468783e+01 obj_fn
 1.8074075570e-10 nln_con1
 -1.8074075570e-10 nln_con2
.
.
.

Gradient-based optimization is only one type of DAKOTA analys
parallelism. Many of the other methods supported by DAKOTA a
parallel environment due to the independence of multiple functio
their design. The Monte Carlo, coordinated pattern search, and
SGOPT are further examples where substantial speed increases
parallel environment for computationally expensive simulator eva
existence of independent function evaluation calls in each algori
DAKOTA methods for which parallel analysis can be used is giveS
Parallelism.

DAK trategies 49

D
In

S

D

In

thods and

d strategies of varying
ked at as modular
lysis. As a combined
dividual problem types.

egies will enhance the
l of insight into your

fication of optimization
many and varied.
cussed.

means of classification,
e optimizer is for
onstrained; has a single
ooth objective and

 general types of
ategorized in tabular

d to handle is one means
or use on problems
at they can handle upper
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Decision Tables for DAKOTA Me
Strategies

DAKOTA provides easy access to a large number of methods an
capabilities. These individual methods and strategies can be loo
components, any one of which may be applied in an overall ana
resource, these modules can be used to solve a wide range of in
Knowing when and where to use particular methods and/or strat
power and performance of DAKOTA, and give you a greater leve
analysis. This section will be primarily concerned with the classi
methods and strategies that are part of DAKOTA since they are
Nondeterministic methods and parameter studies will also be dis

Optimization algorithms can be categorized by several different
according to the uses for which they were designed. Whether th
continuous, discrete, or mixed parameters; is unconstrained or c
optimal solution or multiple possibilities; or has smooth or nonsm
constraint functions are some examples. As a first pass, several
classifications will be given and the associated methods will be c
form.

The types of constraints that an optimization algorithm is designe
of classification. Optimization algortihms are typically designed f
without constraints (unconstrained optimizers), or designed so th

DAK trategies 50

D
In

S

D

In

ar constraint functions, or
ethods under the

ralizations of
erent types of constrained
of linearly constrained,
 performance loss would
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
and lower bound constraints on the optimization parameters, line
nonlinear constraint functions. Categorization of the DAKOTA m
constraint classification is given in Table 1.
Table 1 Constraints

Constrained optimization algorithms are often designed as gene
unconstrained methods. This concept also holds between the diff
optimizers, i.e. nonlinearly constrained is often a generalization
which is a generalization of bound constrained. Thus, little or no

Constraints Applicable Methods

unconstrained optpp_cg,
optpp_fd_newton,
optpp_g_newton,
optpp_newton,
optpp_q_newton, most
sgopt methods

bound
constrained

dot_bfgs, dot_frcg,
optpp_baq_newton,
optpp_bc_elipsoid,
optpp_bc_newton,
optpp_bcg_newton,
optpp_bcq_newton,
sgopt_pga_real,
sgopt_coord_ps

linearly
constrained

special handling with
npsol_sqp; otherwise
any nonlinearly
constrained method

nonlinearly
constrained

npsol_sqp, dot_mmfd,
dot_slp, dot_sqp

DAK trategies 51

D
In

S

D

In

plied to an unconstrained
generalization of the
e of performance is

 another method of
s or real-valued variables
pt integer or a mix of
well as codes that accept
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
be observed for similar methods when a constrained version is ap
problem, etc. This concept is reflected in Figure 11 where each
constraint type encompasses previous constraint types. This typ
particularly true of the gradient-based optimizers.

Figure 11 Generalizations of optimizer constraint handling capabilities.

The type of variable that an optimization code can operate on is
classification. Optimization codes designed to handle continuou
are the most prevalent in DAKOTA. Optimization codes that acce
real and integer variables are also accessible from DAKOTA, as

Unconstrained problems:

selected
OPT++,
SGOPT methods

Nonlinearly constrained problems:

constrained DOT, NPSOL

Bound constrained problems:

selected DOT and OPT++ methods

DAK trategies 52

D
In

S

D

In

AKOTA methods under

i.e. bowl shaped)
onstraints have at most a
volving nonlinear
iple local optimal
blems. Algorithms that
uch more efficient in
problems, because they
ften unknown whether
 to apply a less efficient
e categorized as global
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
continuous nondeterministic variables. Table 2 categorizes the D
the variables classification.
Table 2 Variables

Optimization problems involving minimization of strictly convex (
objective functions that are either unconstrained or have linear c
single local optimal solution. However, minimization problems in
constraints and/or nonconvex objective functions may have mult
solutions. Similar conclusions can be drawn for maximization pro
are designed to solve local optimization problems are typically m
terms of analysis time than ones that apply to global optimization
usually require vastly fewer function evaluations. However, it is o
the problem is global or local a priori. Thus, it is often necessary
global optimization algorithm. The available DAKOTA methods ar
or local in Table 3.

Variables Applicable Methods

continuous DOT, NPSOL, and
OPT++ methods, sao,
sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_real,
sgopt_strat_mc

discrete sgopt_pga_int

mixed sgopt_pga_mixed,
branch_and_bound

DAK trategies 53

D
In

S

D

In

r global or local
constraint functions are
 make a judgement
ombine global and local
dvantages of each, or to

nt function behaviors over
 for performing these
er Study

smooth functions can
t they are applied to are
eing suitable for either
o describe functions that
 It can be noted that by
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
A procedure for determining whether a problem is best suited fo
optimization can be somewhat of an art form. If the objective and
not known analytically, then it is unlikely that it will be possible to
without further information. In some cases it may be desirable to c
optimizers in a hybrid strategy in order to exploit the respective a
make some preliminary assessment of the objective and constrai
the parameter space. DAKOTA provides methods and strategies
types of analyses. SeeMultilevel Hybrid Optimization andParamet
Capabilities for more details.
Table 3 Local vs. global

Optimization algorithms that have been designed to operate on
sometimes suffer severe performance losses if the problems tha
actually nonsmooth. Table 4 categorizes DAKOTA methods as b
smooth or nonsmooth analysis. The term smooth is often used t
have theoretically continuous gradient and Hessian information.

Solution
Type

Applicable Methods

local DOT, NPSOL, and
OPT++ methods
(except optpp_pds),
sao, sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets

global optpp_pds,
sgopt_pga_real,
sgopt_pga_int,
sgopt_strat_mc

DAK trategies 54

D
In

S

D

In

precision arithmetic is
A can tolerate at least

categories of smooth and
high levels of

thness, and thus they
 relatively smooth

compute the gradients.
s that can be observed in
y be suitable for use. For
e a relatively fast means
owever, convergence to
 were employed a

iven optimization
 to gain insight into the
 Study
ould be set so that level
 ~10% of the net change
be apparent that the net

, rather than some form of
nstraint functions. A
uch more work is being

r nonsmooth problems.
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
this definition, numerical analysis is nonsmooth whenever finite
used. However, in practice all the methods employed by DAKOT
some degree of nonsmoothness. What differentiates between the
nonsmooth here is whether or not they are immune to relatively
nonsmoothness.

Gradient based methods cannot tolerate high levels of nonsmoo
comprise the smooth optimization category. Limiting their use to
functions is especially important when finite differencing is used to
However, if the nonsmoothness is small in comparison to change
the objective function over some parameter range, then they ma
this case methods intended for smooth optimization could provid
of obtaining large improvements in the objective function value. H
an optimal point can not be guaranteed, and if finite differencing
relatively large step size would be needed.

Determining when a smooth method is acceptable for use on a g
problem, is again, somewhat of an art form. It may be necessary
level of nonsmoothness present through use of DAKOTA’sParameter
Capabilities. As a rule of thumb, the finite difference step size sh
nonsmoothness in the neighborhood initial point is no more than
in the objective function in the same neighborhood. It should also
observed change in the objective function is a large scale change
local waviness. Similar considerations should be made for the co
close observation of the optimization results usually reveals that m
performed in the line search part of the optimization algorithm fo

DAK trategies 55

D
In

S

D

In

would be observed for a
p by one or more of the
bjective function is

s or a multiprocessor
r optimization problem

ations are expensive,
 where multiple
ode. All the methods
 grained parallelism in
lgorithms. The gradient-
or this method DAKOTA
imization algorithm soon
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
However, the total work performed is usually much less for than
nonsmooth optimization code. This analysis could be followed u
nonsmooth optimization methods if further improvement in the o
needed.
Table 4 Smooth vs. nonsmooth

If you have access to a cluster of network-connected workstation
machine, then you can exploit parallelism in the execution of you
to reduce the overall analysis time. Given that the function evalu
algorithmic coarse-grained parallelism can be exploited in cases
independent function evaluations are made by the optimization c
supported by DAKOTA support at least some algorithmic coarse
one or more specific operating modes. Table 5 categorizes the a
based optimizers support speculative analysis in some modes. F
speculates that gradient information will be requested by the opt

Function
Surface

Applicable Methods

smooth gradient-based: DOT,
NPSOL, OPT++
methods (except
optpp_pds)

nonsmooth optpp_pds, sao,
sgopt_coord_ps,
sgopt_coord_sps,
sgopt_solis_wets,
sgopt_pga_int,
sgopt_pga_real,
sgopt_strat_mc

DAK trategies 56

D
In

S

D

In

t information in parallel,
erall analysis time is
he optimization program
ed by some of the
For these codes, multiple
 iteration, and thus the

tion evaluations become
sands of function

ust be ruled out unless a
arameters can also be a
 an improved objective
oblem dimension
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
after a function evaluation request is made. By computing gradien
at the same time as the function evaluation, a reduction in the ov
achieved. However, the gradient information may not be used by t
on every iteration. A more general form of parallelism is support
gradient-based and all the other types of optimization programs.
independent function evaluations are always requested on every
speculative nature is not present.
Table 5 Algorithmic parallelism

Other classifications are also important. For instance, when func
extremely expensive, methods that typically require tens of thou
evaluations such as genetic algorithms or Monte Carlo analysis m
large parallel machine is available. The number of optimization p
factor. For nongradient-based methods, the probability of finding
function value on the next iteration step falls off quickly as the pr

Parallelism Applicable Methods

Serial standard DOT,
NPSOL, and OPT++
methods using analytic
and vendor numerical
gradients

Parallel DOT, NPSOL, and
OPT++ methods using
DAKOTA numerical
gradients, optpp_pds,
SGOPT methods

DAK trategies 57

D
In

S

D

In

d with the problem

 a given column inherit

 Methods

cg,
ewton,
ewton,
ton,
ewton

ot_frcg,
_newton,
elipsoid,
newton,
_newton,
_newton

dot_mmfd,
t_sqp

rd_ps,
rd_sps,
_wets

_real,
t_mc
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
increases. This is true even if the number of processors is scale
dimension.

Table 6 summarizes the previous classifications. Blank entries in
the category from the previous row.
Table 6 All inclusive summary

Variable
Type

Function
Surface

Solution
Type

Constraints Applicable

continuous smooth local unconstrained optpp_
optpp_fd_n
optpp_g_n
optpp_new
optpp_q_n

bound
constrained

dot_bfgs, d
optpp_baq
optpp_bc_
optpp_bc_
optpp_bcg
optpp_bcq

nonlinearly
constrained

npsol_sqp,
dot_slp, do

nonsmooth local bound
constrained

sgopt_coo
sgopt_coo
sgopt_solis

dependent on
underlying
optimizer

sao

global bound
constrained

sgopt_pga
sgopt_stra

DAK trategies 58

D
In

S

D

In

 not directly used for
 methods. Some of these
divided into
ategy categories in Table

on:
_real)

_int

d_bound

_mixed,
on:
_mixed)

 Methods
OTA User’s Instructions (6/11/99) DAKOTA Introduction - Decision Tables for DAKOTA Methods and S

AKOTA
troduction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

DAKOTA supports interfacing with a number of methods that are
optimization, and several strategies that incorporate optimization
have already been mentioned. These additional capabilities are
nondeterministic analysis, parameter study, and optimization str
7.
Table 7 Other method and strategy classifications

nonlinearly
constrained

(coming so
sgopt_pga

discrete n/a global bound
constrained

sgopt_pga

mixed smooth local nonlinearly
constrained

branch_an

nonsmooth global bound
constrained

sgopt_pga
(coming so
sgopt_pga

General
classification

Applicable Methods

nondeterministic nond_probability,
nond_mean_value

parameter study centered_parameter_study,
list_parameter_study,
multidim_parameter_study,
vector_parameter_study

strategies branch_and_bound,
multi_level, ouu, sao

Variable
Type

Function
Surface

Solution
Type

Constraints Applicable

DAKOTA User’s Instruct 59

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DA
Intr

i Blue text
indicates

a link to more
information.

Ca

Ite

Str

ptimization
imate Optimization
r Uncertainty
ions (6/11

KOTA
oduction

pability

rator C
Optim

D
N
O
S

Unce
M
M

Nonl
G

Para
V
L
C
M

ategy C
Singl
/99) Capability Overview - Main Menu

GOPT Library
rtainty Assessment Capabilities
onte Carlo Probability
ean Value

inear Least Squares Capabilities
auss-Newton

meter Study Capabilities
ector Parameter Study
ist Parameter Study
entered Parameter Study
ultidimensional Parameter Study

apabilities
e Method
Capability
Overview

Simulation
Interfacing

DAKOTA
Commands

Draft Version

Exploiting
Parallelism

Capability Overview
 Introduction

apabilities
ization Capabilities
OT Library
PSOL Library
PT++ Library

Multilevel Hybrid O
Sequential Approx
Optimization Unde

DAKOTA User’s Instruct 60

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

C
Int

Capability
Overview

es

i Blue text
indicates

a link to more
information.

Ite
ions (6/11/99) Capability Overview - Capability Introduction

Nonlinear
Least Squares
Capabilities

Parameter
Study

Capabilities

apability
roduction

Uncertainty
Assessment
Capabilities

Optimization
Capabilities

Strategy
Capabiliti

Draft Version

Capability Introduction

rator and Strategy Hierarchies

DAK ierarchies 61

C
O

S

D

In

C
In

 nondeterministic
ds in its “iterator”
roject: (1) a parameter
elp select the appropriate

a best design, and (3)
meter uncertainty on the
ods may be added as they
lopments. For example,
lations on a massively
of the iterators in the
shown in Figure 12.

prox

es

n

pprox.
terface
OTA User’s Instructions (6/11/99) Capability Overview - Capability Introduction - Iterator and Strategy H

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

apability
troduction

Draft Version

Iterator and Strategy Hierarchies

Figure 12 Iterator and Strategy Hierarchies

The DAKOTA system is designed to accommodate optimization,
simulation, nonlinear least squares, and parameter study metho
hierarchy. These capabilities often complement each other in a p
study is used to investigate local design space issues in order to h
optimizer and optimizer controls, (2) optimization is used to find
nondeterministic simulation is used to assess the affects of para
performance of the optimal design. Other classes of iterator meth
are envisioned, which “leverages” the utility of the interface deve
software effort in coordinating multiple instances of parallel simu
parallel computer (seeMultilevel parallelism) is reusable among all
DAKOTA system. The inheritance hierarchy of these iterators is

Iterator

OptimizerParameter Study Nondeterministic

Multilevel

SGOPTNPSOLDOT OPT++

SeqAp

MCarlo

Least Squar

GNewto

A
In

NonDOpt

MultiDVector

Branch&Bound

Strategy

MeanValue
List Centered

DAK ierarchies 62

C
O

S

D

In

C
In

and exploits their
to only those features

 optimizer branch
, and SGOPT libraries,
arlo sampling (MCarlo)

n method (GNewton) from
vector, list, centered, and
ws describing
onlinear Least
formation on these
 iterator

pproaches in which
nd bound to multiple
onitor performance, and
rved performance. In
 master and slave
The multilevel
st point from one iterator
ngle method strategy (not
viewed as a strategy layer
r solution of mixed

inty strategy incorporates
OTA User’s Instructions (6/11/99) Capability Overview - Capability Introduction - Iterator and Strategy H

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

apability
troduction

Draft Version
Inheritance enables direct hierarchical classification of iterators
commonality by limiting the individual coding which must be done
which make each iterator unique.

The iterator hierarchy is currently divided into four branches: the
contains optimization algorithms from the DOT, NPSOL, OPT++
the nondeterministic branch implements Mean Value and Monte C
methods, the least squares branch incorporates a Gauss-Newto
the OPT++ library, and the parameter study branch implements
multidimensional parameter study methods. Refer to the overvie
Optimization Capabilities, Uncertainty Assessment Capabilities, N
Squares Capabilities, andParameter Study Capabilitiesfor more in
iterator branches, and refer toMethod Commands for information on
specification.

The strategy class hierarchy implements a variety of advanced a
multiple iterators from the iterator hierarchy can be instantiated a
models. These strategies coordinate multiple levels of iteration, m
adapt iterators and models (switch/refine control) based on obse
addition, strategies manage the distribution of tasks between the
processors in implementing parallelism (seeExploiting Parallelism).
hybrid strategy uses multiple optimizers in succession with the be
being used as the starting point for a subsequent iterator. The si
shown) invokes a single iterator using a single model and can be
bypass. The branch and bound strategy is under development fo
continuous/discrete applications. The optimization under uncerta

DAK ierarchies 63

C
O

S

D

In

C
In

d, in the sequential
 an approximate design

ion Interface.
on strategy concepts
 strategy
OTA User’s Instructions (6/11/99) Capability Overview - Capability Introduction - Iterator and Strategy H

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

apability
troduction

Draft Version
an uncertainty quantification within the optimization process. An
approximate optimization strategy, an optimizer is interfaced with
space representation from the hierarchy described inThe Approximat
Refer to the overview ofStrategy Capabilitiesfor more information
and procedures, and refer toStrategy Commands for information on
specification.

DAKOTA User’s Instruct 64

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

Capability
Overview

C
Int es

i Blue text
indicates

a link to more
information.

Int

DO

NP

OP

SG
ions (6/11/99) Capability Overview - Optimization Capabilities

Optimization
Capabilities

apability
roduction

Strategy
Capabiliti

Nonlinear
Least Squares
Capabilities

Parameter
Study

Capabilities

Uncertainty
Assessment
Capabilities

Draft Version

Optimization Capabilities

roduction

T Library

SOL Library

T++ Library

OPT Library

DAK 65

C
O

S

D

In

Op
C

lation of objective and
sian matrices. Currently,
timization

the DAKOTA
traint functions

straints which are linear
ear. In the linear case, a
rms is sufficient to

roviding this matrix to an
t becomes unnecessary
ation since the optimizer
.A., and Wright,

lve nonlinear contraints
 for specification of this
TA. That is, special
straints should be treated
aluation).

f the form gi(X) ≤ 0.

 form -c(X)≤ 0.
OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - Introduction

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version

Introduction

Optimization methods in the DAKOTA system involve the manipu
constraint functions and potentially their gradient vectors and Hes
the number of objective functions must be1, since multi-objective op
formulations are not yet explicitly supported. Thus them functions in
response data set are interpreted as1 objective function andm-1 cons
within the DAKOTA optimizer hierarchy.

Some optimizers (e.g., NPSOL) have the ability to distinguish con
with respect to the design variables from those which are nonlin
single matrix containing the coefficients of the linear constraint te
define the values of these constraints for all parameter sets. By p
optimizer which supports special handling of linear constraints, i
for the user to evaluate these constraints on every function evalu
will evaluate them internally (see[Gill, P.E., Murray, W., Saunders, M
M.H., 1986]). However, since most engineering applications invo
which are implicit functions of the design variables, a mechanism
linear constraint matrix has not yet been developed within DAKO
handling of linear constraints is not yet supported and linear con
as general nonlinear constraints (evaluated on every function ev

In DAKOTA, all nonlinear constraints are inequality constraints o

Therefore, constraints of the form c(X)≥ 0 must be converted to the

DAK 66

C
O

S

D

In

Op
C

 by two oppositely

ation, it is assumed that
nuous design
rs and Hessian matrices
discrete variables do not
 differs from parameter

tinuous variables) and
es with respect to the
OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - Introduction

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version
Furthermore, each equality constraint h(X)= 0 must be implemented
signed inequality constraints: h(X)≤ 0 and -h(X)≤ 0.

When gradient and/or Hessian information is used in the optimiz
derivative components will be computed only with respect to theconti
variables. The omission of discrete variables from gradient vecto
is common among all iterators (since derivatives with respect to
exist); however, inclusion of only the continuous design variables
study iterators (which assume derivatives with respect to all con
from nondeterministic analysis iterators (which assume derivativ
uncertain variables).

DAK 67

C
O

S

D

In

Op
C

]ontains nonlinear
farb-Shanno
gradient (DAKOTA’s
the modified method of
ar programming
ming (DAKOTA’s

best suited for efficient
lobal optima in
optimizers for constrained

n evaluations, the
n type for the DOT
l details on DOT
OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - DOT Library

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version

DOT Library

The DOT library[Vanderplaats Research and Development, 1995c
programming optimizers, specifically the Broyden-Fletcher-Gold
(DAKOTA’s dot_bfgs method) and Fletcher-Reeves conjugate
dot_frcg method) methods for unconstrained optimization, and
feasible directions (DAKOTA’sdot_mmfd method), sequential line
(DAKOTA’s dot_slp method), and sequential quadratic program
dot_sqp method) methods for constrained optimization.

All DOT methods are local gradient-based optimizers which are
navigation to a local minimum in the vicinity of the initial point. G
nonconvex design spaces may be missed. Other gradient based
optimization include theNPSOL Library .

DAKOTA controls the maximum number of iterations and functio
convergence tolerance, the output verbosity, and the optimizatio
methods from its input specification. SeeDOT Methods for additiona
method specifications.

DAK y 68

C
O

S

D

In

Op
C

ight, M.H., 1986]
tion (DAKOTA’s
r for constrained

t navigation to a local
onvex design spaces
 optimization include the

n evaluations, the
l, the function precision,
tion. SeeNPSOL

pearing in the DAKOTA
TRAN device 9 file (e.g.,
.

OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - NPSOL Librar

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version

NPSOL Library

The NPSOL library[Gill, P.E., Murray, W., Saunders, M.A., and Wr
contains a sequential quadratic programming (SQP) implementa
npsol_sqp method). SQP is a nonlinear programming optimize
minimization.

NPSOL’s local gradient-based optimizer is best suited for efficien
minimum in the vicinity of the initial point. Global optima in nonc
may be missed. Other gradient based optimizers for constrained
DOT Library .

DAKOTA controls the maximum number of iterations and functio
convergence tolerance, the output verbosity, the verification leve
and the line search tolerance for NPSOL from its input specifica
Method for additional details on NPSOL specifications.

The NPSOL library generates diagnostics in addition to those ap
output stream. These diagnostics are written to the default FOR
fort.9 on the Sun Solaris architecture) in the working directory

DAK y 69

C
O

S

D

In

Op
C

 programming
te gradient (DAKOTA’s
n, and bound
aq_newton ,
constrained Gauss-

methods - part of
nction full Newton, and
ba_newton ,

KOTA’s
DAKOTA’s
DS nongradient-based
4], specified as
ew algorithm testing

avigation to a local
optima in nonconvex
se gradients and has some
 for which gradient
numerical noise. Some
upport general linear and
raints, theDOT Library
OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - OPT++ Librar

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version

OPT++ Library

The OPT++ library[Meza, J.C., 1994]contains primarily nonlinear
optimizers for unconstrained minimization: Polak-Ribiere conjuga
optpp_cg method), quasi-Newton, barrier function quasi-Newto
constrained quasi-Newton (DAKOTA’soptpp_q_newton , optpp_b
andoptpp_bcq_newton methods), Gauss-Newton and bound
Newton (DAKOTA’soptpp_g_newton andoptpp_bcg_newton
DAKOTA’s nonlinear least squares branch), full Newton, barrier fu
bound constrained full Newton (DAKOTA’soptpp_newton , optpp_
andoptpp_bc_newton methods), finite difference Newton (DA
optpp_fd_newton method), and bound constrained ellipsoid (
optpp_bc_ellipsoid method). The library also contains the P
method (parallel direct search[Dennis, J.E., and Torczon, V.J., 199
DAKOTA’s optpp_pds method), and an input place holder for n
(DAKOTA’s optpp_test_new method).

OPT++’s gradient-based optimizers are best suited for efficient n
unconstrained minimum in the vicinity of the initial point. Global
design spaces may be missed. OPT++’s PDS method does not u
limited global identification abilities; it is best suited for problems
information is unavailable or is of questionable accuracy due to
OPT++ methods support bound constraints, but none currently s
nonlinear constraints. For gradient-based optimization with const

DAK y 70

C
O

S

D

In

Op
C

res methods, refer to

 its input specification:
 convergence tolerance,
 gradient tolerance, the
or PDS. SeeOPT++

pearing in the DAKOTA
T.out in the
OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - OPT++ Librar

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version
and theNPSOL Library should be used. For OPT++’s least squa
Gauss-Newton.

DAKOTA manages the following inputs for OPT++ methods from
the maximum number of iterations and function evaluations, the
the output verbosity, the search method, the maximum step, the
initial radius for ellipsoid methods, and the search scheme size f
Methods for additional details on these specifications.

The OPT++ library generates diagnostics in addition to those ap
output stream. These diagnostics are written to the fileOPT_DEFAUL
working directory.

DAK ry 71

C
O

S

D

In

Op
C

97] contains a
ochastic methods.
ods: real-valued and

int) and
earch algorithms,
eCoupled

t are not available in
h algorithms such as
(opt_coord_ps ,

s are best suited for
odal design spaces, the

cal convergence (from
OPT methods are

mixed variable problems
 or is of questionable
upport general linear and
ions for nonlinear
red, M.S., 1996].

n for all of SGOPT’s
unction evaluations,
OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - SGOPT Libra

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version

SGOPT Library

The SGOPT (Stochastic Global OPTimization) library[Hart, W.E., 19
variety of global optimization algorithms, with an emphasis on st
SGOPT currently includes the following global optimization meth
integer-valued genetic algorithms (sgopt_pga_real , sgopt_pga_
stratified Monte Carlo (sgopt_strat_mc). Evolutionary pattern s
simulated annealing, tabu search, and multistart local search (seThe
Approach) are global methods which are under development bu
DAKOTA V1.0. Additionally, SGOPT includes several local searc
Solis-Wets (sgopt_solis_wets) and coordinate pattern searchsg
sgopt_coord_sps).

For expensive optimization problems, SGOPT’s global optimizer
identifying promising regions in the global design space. In multim
combination of global identification (from SGOPT) with efficient lo
DOT, NPSOL, or OPT++) can be highly effective. None of the SG
gradient-based, which makes them appropriate for discrete and
as well as problems for which gradient information is unavailable
accuracy due to numerical noise. No SGOPT methods currently s
nonlinear constraints directly, although penalty function formulat
constraints have been employed with success[Ponslet, E.R., and Eld

DAKOTA manages the following inputs from its input specificatio
methods: maximum number of iterations, maximum number of f

DAK ry 72

C
O

S

D

In

Op
C

ion, maximum number of
as a variety of settings

al details on all of
OTA User’s Instructions (6/11/99) Capability Overview - Optimization Capabilities - SGOPT Libra

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

timization
apabilities

Draft Version
convergence tolerance, output verbosity, evaluation synchronizat
CPU seconds, and solution accuracy. In addition, each method h
which are specific to it alone. Refer toSGOPT Methods for addition
the SGOPT specifications.

DAKOTA User’s Instruct 73

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

C
Int

Capability
Overview

es

i Blue text
indicates

a link to more
information.

ies

Int

Mo

Me
ions (6/11/99) Capability Overview - Uncertainty Assessment Capabilities

Uncertainty
Assessment
Capabilities

apability
roduction

Optimization
Capabilities

Strategy
Capabiliti

Nonlinear
Least Squares
Capabilities

Parameter
Study

Capabilities

Draft Version

Uncertainty Assessment Capabilit

roduction

nte Carlo Probability

an Value

DAK uction 74

C
O

S

D

In

U
A
C

nistic analysis methods) in
butions for response
probability distributions
nse data set are

tween functions as with
 the DAKOTA

 are employed to define

inty assessment, it is
 respect to theuncertain
ission of discrete
among all iterators (since
ver, inclusion of only the
 assume derivatives with
ast squares iterators
 variables).
OTA User’s Instructions (6/11/99) Capability Overview - Uncertainty Assessment Capabilities - Introd

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ncertainty
ssessment
apabilities

Draft Version

Introduction

Uncertainty assessment methods (also referred to as nondetermi
the DAKOTA system involve the computation of probability distri
functions based on sets of simulations taken from the specified
for uncertain parameters. Thus them functions in the DAKOTA respo
interpreted asmgeneral response functions (with no distinction be
objective and constraint functions in the optimizer branch) within
uncertainty assessment hierarchy.

Within the variables specification, uncertain variable descriptions
the parameter probability distributions (seeUncertain Variables).

When gradient and/or Hessian information is used in the uncerta
assumed that derivative components will be computed only with
variables (where all uncertain variables are continuous). The om
variables from gradient vectors and Hessian matrices is common
derivatives with respect to discrete variables do not exist); howe
uncertain variables differs from parameter study iterators (which
respect to all continuous variables) and from optimization and le
(which assume derivatives with respect to the continuous design

DAK lo Probability 75

C
O

S

D

In

U
A
C

bility
eter observations within
ions for response
ing the response results

tremely expensive in
rate converged statistics.

ionally demanding is the

e type (pure random or
rlo Probability method

r additional details
OTA User’s Instructions (6/11/99) Capability Overview - Uncertainty Assessment Capabilities - Monte Car

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ncertainty
ssessment
apabilities

Draft Version

Monte Carlo Probability

The Monte Carlo probability iterator is selected using thenond_proba
specification. This iterator performs sampling for different param
a specified parameter distribution in order to assess the distribut
functions. Probability of occurrence is then assessed by compar
against response thresholds.

All Monte Carlo methods are sampling methods which can be ex
terms of the number of required function evaluations need to gene
A different nondeterministic approach that can be less computat
mean value method (seeMean Value).

DAKOTA controls the observations, the random seed, the sampl
Latin Hypercube), and the response thresholds for the Monte Ca
from its input specification. SeeMonte Carlo Probability Method fo
on this method specification.

DAK Value 76

C
O

S

D

In

U
A
C

ecification. This
tistics based on specified
tical method and does not

g, it can be much less
e Carlo
istribution assumptions
y evaluated.

ethod from its input
method specification.
OTA User’s Instructions (6/11/99) Capability Overview - Uncertainty Assessment Capabilities - Mean

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ncertainty
ssessment
apabilities

Draft Version

Mean Value

The mean value method is selected using thenond_mean_value sp
iterator computes approximate response function distribution sta
parameter distributions. The mean value method is a direct analy
perform any random sampling.

Since the mean value method does not perform random samplin
computationally demanding than the Monte Carlo approach (seeMont
Probability). However, since the method is based on Gaussian d
and linearizations, the accuracy of the statistics must be carefull

DAKOTA controls the response file names for the mean value m
specification. SeeMean Value Method for additional details on this

DAKOTA User’s Instruct 77

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

C
Int

Capability
Overview

es

i Blue text
indicates

a link to more
information.

ies

Int

Ga
ions (6/11/99) Capability Overview - Nonlinear Least Squares Capabilities

apability
roduction

Nonlinear
Least Squares
Capabilities

Optimization
Capabilities

Strategy
Capabiliti

Parameter
Study

Capabilities

Uncertainty
Assessment
Capabilities

Draft Version

Nonlinear Least Squares Capabilit

roduction

uss-Newton

DAK uction 78

C
O

S

D

In

Non

C

mizers which exploit the
blems commonly arise in
 exploit the problem
an using the least squares
 each term in the sum-of-
d by the simulation. This
ist of the individual
n objective function and
ese individual terms are
rved quantities from
 example showing
e functions.

n approximate Hessian
s in the Hessian matrix
als themselves and will
sidual function and
approximate Hessian of

e efficient than general-
s zero at the solution.
OTA User’s Instructions (6/11/99) Capability Overview - Nonlinear Least Squares Capabilities - Introd

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

linear Least
Squares
apabilities

Draft Version

Introduction

Nonlinear least squares methods in the DAKOTA system are opti
special structure of a least squares objective function. These pro
parameter estimation and test/analysis reconciliation. In order to
structure, response data at a “finer grain” are required. Rather th
objective function and its gradient, least squares iterators require
squares formulation along with its gradient as the data set returne
means that them functions in the DAKOTA response data set cons
terms in the sum-of-the-squares objective function, rather than a
m-1 constraint functions (as they are in the optimizer branch). Th
often called residuals in cases where they denote errors of obse
desired quantities. Refer toRosenbrock Problem Formulation for an
the relationship between optimization and least squares respons

This enhanced granularity allows for simplified computation of a
matrix which only uses residual derivative information, since term
which contain residual second derivatives also contain the residu
become negligible as the residuals tend towards zero. That is, re
gradient information is sufficient to define the value, gradient, and
the least squares objective function.

In practice, least squares solvers will tend to be significantly mor
purpose optimization algorithms when the residuals tend toward

DAK uction 79

C
O

S

D

In

Non

C

als at the solution are

essian information will
 omission of
 common among all
ot exist); however,
ameter study iterators
s) and from

h respect to the uncertain

on of the Dakota input
e the number of
ts , or
es terms, and using
lator (it will be
OTA User’s Instructions (6/11/99) Capability Overview - Nonlinear Least Squares Capabilities - Introd

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

linear Least
Squares
apabilities

Draft Version
Least squares solvers may experience difficulty when the residu
significant.

As for optimization iterators, it is assumed that gradient and/or H
be computed only with respect to thecontinuous design variables. The
discrete variables from gradient vectors and Hessian matrices is
iterators (since derivatives with respect to discrete variables do n
inclusion of only the continuous design variables differs from par
(which assume derivatives with respect to all continuous variable
nondeterministic analysis iterators (which assume derivatives wit
variables).

In order to specify a least-squares problem, the responses secti
should be configured usingnum_least_squares_terms to defin
functions, using eithernumerical_gradients , analytic_gradien
mixed_gradients to define the gradients of these least squar
no_hessians , since no Hessian will be supplied from the simu
approximated internally).

DAK -Newton 80

C
O

S

D

In

Non

C

bcg_newton
ms in which the residual
 tend towards zero at the
ageMeza, J.C., 1994].
+ Library .

r efficient navigation to a
al solutions in
n and
onstraints. Since
meters within physically
 of choice for

neral linear or
airly rare in typical
h as those available in the
L Library). While
f the squares objective
g constrained
OTA User’s Instructions (6/11/99) Capability Overview - Nonlinear Least Squares Capabilities - Gauss

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

linear Least
Squares
apabilities

Draft Version

Gauss-Newton

Gauss-Newton iterators (DAKOTA’soptpp_g_newton andoptpp_
methods) approximate the true Hessian matrix by neglecting ter
function values appear, under the assumption that the residuals
solution. The Gauss-Newton algorithm is part of the OPT++ pack[
For a more complete description of the OPT++ package, refer toOPT+

Gauss-Newton is a gradient-based algorithm and is best suited fo
local least squares solution in the vicinity of the initial point. Glob
nonconvex design spaces may be missed. DAKOTA’soptpp_g_newto
optpp_bcg_newton methods differ in their support for bound c
bound constraints are commonly very important for keeping para
meaningful ranges,optpp_bcg_newton will often be the method
parameter estimation.

Neitheroptpp_g_newton noroptpp_bcg_newton support ge
nonlinear constraints. If these types of constraints are present (f
estimation problems), general-purpose optimization methods suc
DOT and NPSOL libraries can be used (seeDOT Library andNPSO
neither DOT nor NPSOL exploit the special structure of a sum o
function, both are effective general-purpose algorithms for solvin
minimization problems.

DAK -Newton 81

C
O

S

D

In

Non

C

ethod from its input
aluations, the
, the maximum step, and

these specifications.
OTA User’s Instructions (6/11/99) Capability Overview - Nonlinear Least Squares Capabilities - Gauss

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

linear Least
Squares
apabilities

Draft Version
DAKOTA manages the following inputs for the Gauss-Newton m
specification: the maximum number of iterations and function ev
convergence tolerance, the output verbosity, the search method
the gradient tolerance. SeeOPT++ Methods for additional details on

DAKOTA User’s Instruct 82

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

Capability
Overview

C
Int es

i Blue text
indicates

a link to more
information.

Int

Ve

Lis

Ce

Mu
ions (6/11/99) Capability Overview - Parameter Study Capabilities

Parameter
Study

Capabilities

Optimization
Capabilities

apability
roduction

Strategy
Capabiliti

Nonlinear
Least Squares
Capabilities

Uncertainty
Assessment
Capabilities

Draft Version

Parameter Study Capabilities

roduction
Initial Values
Data Cataloguing

ctor Parameter Study

t Parameter Study

ntered Parameter Study

ltidimensional Parameter Study

DAK on 83

C
O

S

D

In

Par
C

mputation of response
sponse functions are not
A response data set
ization, least squares, or

sponses input
 study iterator to be
ncertainty quantification

on, response data sets
of the response functions
everal different levels of
ameter ranges provides
rameters, (2) derivative
y the simulator, or both
t a point or points in

ough the parameter space

r study capabilities are
 issues (so that models

s), generating parameter
ameter space visualization,
) through parameter
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Introducti

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version

Introduction

Parameter study methods in the DAKOTA system involve the co
data sets at a selection of points in the parameter space. The re
linked to any specific interpretation, so them functions in the DAKOT
which are being catalogued by the study can consist of any optim
generic response function definition which is allowable by the re
specification (seeResponses Commands). This allows a parameter
used in direct conjunction with optimization, least squares, and u
iterators without significant modification to the input file. In additi
are not restricted to function values only; gradients and Hessians
can also be catalogued by the parameter study. This allows for s
“sensitivity analysis”: (1) the variation of function values over par
indirect information on the sensitivity of the functions to those pa
information can be computed numerically, provided analytically b
(mixed gradients) in directly determining sensitivity information a
parameter space, and (3) the variation of derivative quantities thr
can be investigated.

In addition to the cited sensitivity analysis applications, paramete
also commonly used for investigating simulation nonsmoothness
can be tuned for use with gradient-based optimization algorithm
and response ensembles for response surface generation or par
and performing code verification (verifying simulation robustness

DAK on 84

C
O

S

D

In

Par
C

either a pre-processor (to
ality analysis) within a

zation) , since
und in a previous study as
nt iteration or both. Note

alues) will be
n. The best design point
st constraint violation, or
tion.

mbination of design,
nction, gradient, and
 definitions. More
n different types of

 pass all of the variables
h they expect to retrieve
only subtle distinction
mputed. When gradient
r study, then it is assumed
f thecontinuous
cified. The omission of
 common among all
ot exist); however,
 least squares iterators

esign variables) and from
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Introducti

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
ranges of interest. A parameter study iterator can also be used as
identify a good starting point) or a post-processor (for post-optim
multilevel hybrid optimization strategy (seeMultilevel Hybrid Optimi
each parameter study iterator can accept the best design point fo
its starting point or pass along its best design point for subseque
that only those parameter studies which use initial values (seeInitial V
affected by accepting the best design point from previous iteratio
found in a parameter study is defined to be the point with the lea
if there are no violations, the point with the lowest objective func

Parameter study iterators will iterate any set of variables (any co
uncertain, and state variables) into any set of responses (any fu
Hessian definition), so there are no restrictions on valid data set
specifically, parameter study iterators draw no distinction betwee
variables and different types of response functions. They simply
defined in the variables specification into the interface, from whic
all of the responses defined in the responses specification. The
involves the set of variables for which function derivatives are co
and/or Hessian information is being catalogued in the paramete
that derivative components will be computed with respect to all o
variables (continuous design, uncertain, and state variables) spe
discrete variables from gradient vectors and Hessian matrices is
iterators (since derivatives with respect to discrete variables do n
inclusion of all continuous variables differs from optimization and
(which assume derivatives only with respect to the continuous d

DAK on 85

C
O

S

D

In

Par
C

ly with respect to the
ill be mapped through

es by the parameter study

 of the variables from the
 starting point and
e of design variables, the

ate is used.
cation and 0.0 is used
better value than 0.0).
d by
te, and uncertain

sponses for each function
s intended to
ilable in concise form
le (i.e.,dakota.out).
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Introducti

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
nondeterministic analysis iterators (which assume derivatives on
uncertain variables). Lastly, while discrete variables (if present) w
the interface, enumeration of the discrete values of these variabl
methods is not yet supported.

Initial Values

The vector and centered parameter studies use the initial values
variables commands specification (seeVariables Commands) as the
the central point of the parameter studies, respectively. In the cas
initial_point is used. In the case of state variables, theinitial_st
In the case of uncertain variables, there is no initial value specifi
initially for each of these variables (NOTE: the mean might be a
Therefore, in the following discussions, “Initial Values” are define
initial_point , initial_state , and 0.0 for the design, sta
variables specified in the study, respectively.

Data Cataloguing

All parameter study algorithms catalogue the parameters and re
evaluation in a special file nameddakota_pstudy.dat . This file i
simplify plotting of parameter study data by making the data ava
separate from the other information available in the main output fi

DAK ter Study 86

C
O

S

D

In

Par
C

ected intervals along a one-
sses both single-

able on a response set) as
onse variations along
bility is used recursively
l parameter studies (see
y).

ation formulations which
r and steps of the

arameter study starting
the orientation and length
 vector. Several examples
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Vector Parame

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version

Vector Parameter Study

The vector parameter study computes response data sets at sel
dimensional vector in parameter space. This capability encompa
coordinate parameter studies (to study the effect of a single vari
well as multiple coordinate vector studies (to investigate the resp
some n-dimensional vector). In addition to these uses, this capa
within the implementations of the centered and multidimensiona
Centered Parameter Study andMultidimensional Parameter Stud

Dakota’s vector parameter study includes three possible specific
are used in conjunction with the Initial Values to define the vecto
parameter study:

{final_point = <LISTof><REAL>} and {step_length = <REAL>}
{final_point = <LISTof><REAL>} and {num_steps = <INTEGER>}
{step_vector = <LISTof><REAL>} and {num_steps = <INTEGER>}

In each of these three cases, the Initial Values are used as the p
point and the specification selected from the three above defines
of the vector as well as the increments to be evaluated along the
starting from Initial Values of 1.0, 1.0, 1.0 are included below:

final_point = 1.0, 2.0, 1.0 andstep_length = .4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.0000000000e+00 d1

DAK ter Study 87

C
O

S

D

In

Par
C

OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Vector Parame

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
 1.4000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 3:
 1.0000000000e+00 d1
 1.8000000000e+00 d2
 1.0000000000e+00 d3

final_point = 2.0, 2.0, 2.0 andstep_length = .4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.2309401077e+00 d1
 1.2309401077e+00 d2
 1.2309401077e+00 d3
Parameters for function evaluation 3:
 1.4618802154e+00 d1
 1.4618802154e+00 d2
 1.4618802154e+00 d3
Parameters for function evaluation 4:
 1.6928203230e+00 d1
 1.6928203230e+00 d2
 1.6928203230e+00 d3
Parameters for function evaluation 5:
 1.9237604307e+00 d1
 1.9237604307e+00 d2
 1.9237604307e+00 d3

final_point = 2.0, 2.0, 2.0 andnum_steps = 4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.2500000000e+00 d1
 1.2500000000e+00 d2
 1.2500000000e+00 d3
Parameters for function evaluation 3:
 1.5000000000e+00 d1

DAK ter Study 88

C
O

S

D

In

Par
C

orctor Parameter
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Vector Parame

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
 1.5000000000e+00 d2
 1.5000000000e+00 d3
Parameters for function evaluation 4:
 1.7500000000e+00 d1
 1.7500000000e+00 d2
 1.7500000000e+00 d3
Parameters for function evaluation 5:
 2.0000000000e+00 d1
 2.0000000000e+00 d2
 2.0000000000e+00 d3

step_vector = .1, .1, .1 andnum_steps = 4:
Parameters for function evaluation 1:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
 1.0000000000e+00 d3
Parameters for function evaluation 2:
 1.1000000000e+00 d1
 1.1000000000e+00 d2
 1.1000000000e+00 d3
Parameters for function evaluation 3:
 1.2000000000e+00 d1
 1.2000000000e+00 d2
 1.2000000000e+00 d3
Parameters for function evaluation 4:
 1.3000000000e+00 d1
 1.3000000000e+00 d2
 1.3000000000e+00 d3
Parameters for function evaluation 5:
 1.4000000000e+00 d1
 1.4000000000e+00 d2
 1.4000000000e+00 d3

For additional information, refer to the commands specification fVe
Study.

DAK r Study 89

C
O

S

D

In

Par
C

ed points in parameter
not confined to lie on any

rameter set (the firstn
s), and so on, until

l not be used, they need

ter sets as in the first

ort Parameter
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - List Paramete

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version

List Parameter Study

The list parameter study computes response data sets at select
space. These points are explicitly specified by the user and are
line or surface.

This iterator requires the following specification:
{list_of_points = <LISTof><REAL>}

This parameter study simply performs simulations for the first pa
entries in the list), followed by the next parameter set (the nextn entrie
the list of points has been exhausted. Since the Initial Values wil
not be specified.

An example specification which would result in the same parame
example inVector Parameter Study would be:

list_of_points = 1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0

For additional information, refer to the commands specification fLis
Study.

DAK eter Study 90

C
O

S

D

In

Par
C

er studies, one per
eful for investigation of
after computing an
nalysis in verifying that
ndary and in

ercent and
r variable in each of the

, and
us deltas, the center
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Centered Param

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version

Centered Parameter Study

The centered parameter study executes multiple vector paramet
parameter, centered about the specified Initial Values. This is us
function contours in the vicinity of a specific point. For example,
optimum design, this capability could be used for post-optimality a
the computed solution is actually at a minimum or constraint bou
investigating the shape of this minimum or constraint boundary.

This iterator requires the following specifications:
{percent_delta = <REAL>}
{deltas_per_variable = <INTEGER>}

wherepercent_delta specifies the size of the increments in p
deltas_per_variable specifies the number of increments pe
plus and minus directions.

For example, with Initial Values of 1.0, 1.0,percent_delta = 10.0
deltas_per_variable = 2, five function evaluations (two min
point, and two plus deltas) would be performed per variable:

Parameters for function evaluation 1:
 8.0000000000e-01 d1
 1.0000000000e+00 d2
Parameters for function evaluation 2:
 9.0000000000e-01 d1
 1.0000000000e+00 d2
Parameters for function evaluation 3:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 4:

DAK eter Study 91

C
O

S

D

In

Par
C

OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Centered Param

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
 1.1000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 5:
 1.2000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 6:
 1.0000000000e+00 d1
 8.0000000000e-01 d2
Parameters for function evaluation 7:
 1.0000000000e+00 d1
 9.0000000000e-01 d2
Parameters for function evaluation 8:
 1.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 9:
 1.0000000000e+00 d1
 1.1000000000e+00 d2
Parameters for function evaluation 10:
 1.0000000000e+00 d1
 1.2000000000e+00 d2

This set of points in parameter space is depicted in Figure 13

Figure 13 Example centered parameter study.

d1

d2

1

0
1

DAK eter Study 92

C
O

S

D

In

Par
C

rntered Parameter
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Centered Param

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
For additional information, refer to the commands specification foCe
Study.

DAK rameter Study 93

C
O

S

D

In

Par
C

dy

 sets for an n-dimensional
qually spaced intervals
e values defined by these

rmed in the study is:

(6)

ach continuous variable
 need not be specified.

efined by the upper
ithtitions =
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Multidimensional Pa

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version

Multidimensional Parameter Stu

The multidimensional parameter study computes response data
hypergrid of points. Each continuous variable is partitioned into e
between its upper and lower bounds, and each combination of th
partitions is evaluated. The number of function evaluations perfo

The partitions information is specified as follows:
{partitions = <LISTof><INTEGER>}

where the entries in the list specify the number of partitions for e
(i.e.,). Since the Initial Values will not be used, they

In a two variable example problem with d1∈ [0,2] and d2∈ [0,3] (as d
and lower bounds specified in the variables specification) and wpar

partitions i 1+()
i 1=

n

∏

partitions i

DAK rameter Study 94

C
O

S

D

In

Par
C

nd the interval [0,3] is
rid, shown in Figure 14,
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Multidimensional Pa

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
2,3 , the interval [0,2] is divided into two equal-sized partitions a
divided into three equal-sized partitions. This two-dimensional g

Figure 14 Example multidimensional parameter study

 would result in the following twelve function evaluations:
Parameters for function evaluation 1:
 0.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 2:
 1.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 3:
 2.0000000000e+00 d1
 0.0000000000e+00 d2
Parameters for function evaluation 4:
 0.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 5:
 1.0000000000e+00 d1
 1.0000000000e+00 d2

d1

d2

1

2

3

0 1 2

3 partitions

2 partitions

DAK rameter Study 95

C
O

S

D

In

Par
C

orltidimensional
OTA User’s Instructions (6/11/99) Capability Overview - Parameter Study Capabilities - Multidimensional Pa

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

ameter Study
apabilities

Draft Version
Parameters for function evaluation 6:
 2.0000000000e+00 d1
 1.0000000000e+00 d2
Parameters for function evaluation 7:
 0.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 8:
 1.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 9:
 2.0000000000e+00 d1
 2.0000000000e+00 d2
Parameters for function evaluation 10:
 0.0000000000e+00 d1
 3.0000000000e+00 d2
Parameters for function evaluation 11:
 1.0000000000e+00 d1
 3.0000000000e+00 d2
Parameters for function evaluation 12:
 2.0000000000e+00 d1
 3.0000000000e+00 d2

For additional information, refer to the commands specification fMu
Parameter Study.

DAKOTA User’s Instruct 96

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

es

Capability
Overview

C
Int

i Blue text
indicates

a link to more
information.

Int

Sin

Mu

Se

Op

Bra
ions (6/11/99) Capability Overview - Strategy Capabilities

Nonlinear
Least Squares
Capabilities

Parameter
Study

Capabilities

Strategy
Capabiliti

Uncertainty
Assessment
Capabilities

apability
roduction

Optimization
Capabilities

Draft Version

Strategy Capabilities

roduction

gle Method

ltilevel Hybrid Optimization
The Uncoupled Approach
The Uncoupled Adaptive Approach
The Coupled Approach

quential Approximate Optimization

timization Under Uncertainty

nch and Bound

DAK 97

C
O

S

D

In

C

anagement of multiple
rved need for high level
ses. By providing an
le to develop adaptive
n run-time performance
dures which exploit the

nd incorporate
e reliably and efficiently

lass hierarchy shown in
rs are combined in a
s the starting point for a

rics, and the existence of
s are important research
 can be viewed as a “fall

 at the strategy layer and
gy is used for solution of
imization strategy (a.k.a.
tification within the
tities, such as probability
tant research issue. In the
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Introduction

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Introduction

Dakota’s strategy layer was developed to provide a means for m
iterators, models, and approximations. It was driven by the obse
“meta-control” of optimization and other system analysis proces
additional level of logic on top of the iterators, it becomes possib
strategies which switch and refine iterators and models based o
assessments. This adaptive control can lead to automated proce
capabilities of several iterators, manage varying model fidelity, a
approximations for the purpose of navigating to the solution mor
than with single method approaches.

Several advanced approaches are available within the strategy c
Figure 12. In the multilevel hybrid strategy, two or more optimize
hybrid strategy in which the best point from one iterator is used a
subsequent iterator. Fine-grained control, effective switching met
multiple iteration follow-on candidates from some global method
issues. The single method strategy invokes only one iterator and
through” strategy in that no additional coordination is performed
control falls through to the iterator. The branch and bound strate
mixed continuous/discrete applications. The nondeterministic opt
optimization under uncertainty) incorporates an uncertainty quan
optimization process. It can be used to minimize stochastic quan
of failure. Use of nested and segregated frameworks is an impor

DAK 98

C
O

S

D

In

C

rfaced with an
oximate optimal solution.
 used to update the
 of experimental design
 minimal number of

nt approaches for

trategy layer implements
 separation of iterator
processors). Refer to

TATUS” statements have
ions.
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Introduction

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version
sequential approximate optimization strategy, an optimizer is inte
approximate design space representation in order to find an appr
“Exact” evaluations at this approximate optimal solution are then
approximation and restart the sequence. Here, the effective use
techniques, the development of accurate approximations using a
function evaluations, and the development of provably converge
sequential approximation are important research issues.

In addition to management of multiple iterators and models, the s
the master-slave algorithm for exploiting parallelism by providing
code (the master processor) from model server code (the slave
Exploiting Parallelism for additional details.

Several strategies continue to be works in progress. Therefore, “S
been added at the end of each of the following strategy descript

DAK 99

C
O

S

D

In

C

trategyclass and is
 section specification
). The single method
cation is included in the

object which
 since the main

of one of the strategies
ation of multiple
ired to create the iterator
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Single Method

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Single Method

The single method strategy is implemented within theSingleMethodS
invoked with thesingle_method selection in the user’s strategy
(seeSingle Method Commands for additional specification details
strategy is also used as the default strategy if no strategy specifi
user’s input file.

The single method strategy is used to invoke a singleDakotaIterator
iterates on a singleDakotaModel object. This “strategy” is provided
program of DAKOTA is bound to the instantiation and execution
within theDakotaStrategy class hierarchy. That is, even if coordin
iterators and models is not needed, a simple strategy is still requ
and the model and perform the iteration.

STATUS: Fully operational.

DAK ization 100

C
O

S

D

In

C

tStrategy class
egy section
dditional
ilable: the uncoupled
proach.

 the order specified in a
used as the starting point
eparate convergence
 own internal
pletion may be

) or iteration
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Multilevel Hybrid Optim

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Multilevel Hybrid Optimization

The multilevel hybrid strategy is implemented within theMultilevelOp
and is invoked with themulti_level selection in the user’s strat
specification (seeMultilevel Hybrid Optimization Commands for a
specification details). There are three multilevel approaches ava
approach, the uncoupled adaptive approach, and the coupled ap

The Uncoupled Approach

In the uncoupled approach, a sequence of methods is invoked in
method list specification. The best solution from each method is
for the following method. Method switching is governed by the s
controls of each method; that is,each iterator is allowed to run to its
definition of completion without interference. Individual method com
determined by convergence criteria (e.g.,convergence_tolerance
limits (e.g.,max_iterations).

The basic algorithm, in simplified form, is shown in Figure 15:

DAK ization 101

C
O

S

D

In

C

nctions which
ific implementation can
 required is the

lopment of more finely
In this approach,
t a timeand intermediate
. For example, a gradient-
nstraint gradients,
ing a line search along the
izer one cycle at a time,
nce metrics can be

 than the convergence

fer

t
ars.

r

OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Multilevel Hybrid Optim

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Figure 15 Uncoupled multilevel hybrid optimization strategy

whererun_iterator() andbest_variables() are virtual fu
define a generic behavior valid for all iterators for which the spec
vary. This strategy is relatively simple since the only coordination
transferral of the best solution between successive iterators.

STATUS: Fully operational.

The Uncoupled Adaptive Approach

The simple uncoupled approach is being extended through deve
grained iterator control using “iterator++” overloaded operators.
optimization algorithms are incremented one optimization cycle a
performance data are returned as a basis for adaptive switching
based optimization cycle consists of computing objective and co
computing a search direction using these gradients, and perform
search direction to find an improved point. By executing an optim
a history of improved points can be logged and relative performa
defined. These performance metrics are fundamentally different

Run iterator

Trans

to completion

to nex

for (i=0; i<numIterators; i++) {
 iterators[i].run_iterator();
 if (i+1 < numIterators) {
 vars_star = iterators[i].best_variables();

 iterators[i+1].design_variables(vars_star);
 }
}

best v

iterato

DAK ization 102

C
O

S

D

In

C

 typically assess whether
 tolerance (e.g., are the
ly satisfied?) whereas
rate of improvement in
ignificantly?). While this
e.g., convergence
r to a rate of progress
prior to its formal
distinction can be cast as
, the former question is
ailability of multiple
h.

variables()
ed progress threshold

 cycle

ogress

r
s.

op:
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Multilevel Hybrid Optim

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version
metrics used in the nonadaptive approach: convergence metrics
the method can make any additional progress within a specified
Kuhn-Tucker conditions for a constrained minimum approximate
performance metrics measure the rate of progress (i.e., has the
objective minimization and/or constaint satisfaction decreased s
distinction is somewhat fuzzy since some convergence metrics (
tolerance on relative change in the objective function) are simila
metric, the key point is that we may want to terminate a method
convergence and switch to another method. Put another way, this
“are we there?” versus “how fast are we getting there?” Certainly
most appropriate when one method is available; however, the av
methods in a hybrid strategy admits a more aggressive approac

The basic algorithm, in simplified form, is shown in Figure 16:

Figure 16 Uncoupled adaptive multilevel hybrid optimization strategy

where the overloaded++ operator,best_responses() , andbest_
are virtual functions, andprogThreshold contains a user specifi

Increment 1
Get results
Compute pr

for (i=0; i<numIterators; i++) {
 while (progMetric >= progThreshold) {
 iterators[i]++;
 r_star = iterators[i].best_responses();
 progMetric = compute_progress(r_star);
 }
 if (i+1 < numIterators) {
 vars_star = iterators[i].best_variables();

 iterators[i+1].design_variables(vars_star);
 }
}

Transfe

to next
best var

iterator

Optimization lo

DAK ization 103

C
O

S

D

In

C

quires considerably
e additional mechanisms
 the optimizers.

 when attempting to
approach to this is to
f optimization cycles.
c (normalized
old and trigger
r to 1.0), the user

ase in convergence rate
.0) will be
onvergence rate. In this
coupled approach and, in

etion prior to

ailable within SGOPT
r example, whereas an
und from a GA to start a
ally improve members in
ultiple methods run one
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Multilevel Hybrid Optim

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version
(seeMultilevel Hybrid Optimization Commands). This strategy re
more sophistication than the standard uncoupled approach sinc
for cycle control and progress computation are required for all of

Definition of an appropriate progress metric can be troublesome
encompass broad classes of methods. In general, the DAKOTA
compute rate of convergence history information over a series o
When rate of improvement slows from previous cycles, theprogMetri
between 0.0 and 1.0) will be small and may fall below theprogThresh
a method switch. By selecting a largeprogThreshold value (close
can specify aggressive method switching in which a slight decre
will trigger a switch, whereas a smallprogThreshold (closer to 0
considerably more tolerant of (perhaps transient) decreases in c
latter case, the adaptive approach may perform much like the un
fact, the internal convergence criteria may trigger method compl
progMetric triggering a method switch.

STATUS: adaptive “iterator++” approach under development.

The Coupled Approach

The coupled approach implements specific hybrid algorithms av
which exploit a tighter coupling to achieve peak performance. Fo
uncoupled GA/local search hybrid would use the best solution fo
local search, a coupled hybrid would use local search to occasion
an evolving GA population. That is, in an uncoupled approach, m

DAK ization 104

C
O

S

D

In

C

 coupled approach,
istically improve the

d possible combinations
thod combinations. Only
d list): one global method

tlypt_pga_real
rently

. More methods
 case, local

In the
”), local search is
hen a local search is
next sample). This type
n, although in this case it
s would be performed
termination criteria such
n follow-on
ot a particularly
h expensive engineering
 benchmark for
 hybrids).

al hybrids under
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Multilevel Hybrid Optim

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version
at a time sharing only their best results at completion, while in a
methods are working together throughout the strategy to synerg
solution.

Whereas in the uncoupled approach, the number of methods an
are unlimited, the coupled approach has only a few allowable me
two methods are specified (as opposed to an open-ended metho
and one local method. The allowable global methods are currensgo
andsgopt_strat_mc , and the allowable local methods are cur
sgopt_solis_wets , sgopt_coord_ps , andsgopt_coord_sps
will be allowable selections in future releases. In thesgopt_pga_real
search is used to periodically improve GA population members.
sgopt_strat_mc case (also known as “multi-start local search
applied with a prescribed probability to Monte Carlo samples. W
performed, it is performed immediately (prior to evaluation of the
of iterator coordination makes it a coupled approach by definitio
only differs from an uncoupled approach (in which local searche
after all sampling was complete) in the effect of order-dependent
asmax_function_evaluations and, possibly, in how iteratio
candidates are selected. Thesgopt_strat_mc coupled hybrid is n
sophisticated hybrid and is not recommended for optimization wit
simulations. It is primarily useful for its theoretical simplicity as a
comparison with more efficient approaches (i.e., the GA coupled

STATUS: strategy wrapper for SGOPT multi-start and global/loc
development.

DAK ptimization 105

C
O

S

D

In

C

ation

d within the
ate_opt
pproximate

l and
tructed. The
the hierarchy described
ne of the simulation
e approximation

selected via a design
e
to this model in the
his approximate optimum
esponse pair is
rgence of the process.

 the approximation is
d, then the new
theapproxModel .
ocess repeats until
s onpproxModel .
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Sequential Approximate O

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Sequential Approximate Optimiz

The sequential approximate optimization strategy is implemente
SeqApproxOptStrategy class and is invoked with theseq_approxim
selection in the user’s strategy section specification (seeSequential A
Optimization Commands for additional specification details).

In theseq_approximate_opt strategy, two models (actualMode
approxModel) and one iterator (selectedIterator) are cons
approxModel contains one of the approximation methods from
in The Approximation Interface and theactualModel contains o
interfacing methods described inThe Application Interface. First, th
within approxModel is built using function evaluations which are
of experiments and which are performed with theactualModel . Th
selectedIterator then iterates onapproxModel (it is bound
strategy constructor) and computes an approximate optimum. T
is evaluated with theactualModel and the resulting parameter/r
evaluated for improvement from the previous cycle and for conve
Based on the observed improvement, the extent (i.e. bounds) of
modified via trust region concepts. If the process is not converge
parameter/response pair from theactualModel is used to update
Iteration is then reinitiated on the updatedapproxModel and the pr
convergence. It is worth emphasizing that the iterator only iteratea

DAK ptimization 106

C
O

S

D

In

C

proximation and is

nctions within the
imation() ,
 interface hierarchy.
operations (e.g.,
l process.

nts.

 soln.
xtent
 data

rox.

ox.soln.
 approx.
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Sequential Approximate O

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version
TheactualModel is only used for building and updating the ap
never iterated directly.

The basic algorithm, in simplified form, is shown in Figure 17:

Figure 17 Sequential approximate optimization strategy

whererun_iterator() andbest_variables() are virtual fu
iterator hierarchy andbuild_approximation() , modify_approx
andupdate_approximation() are virtual functions within the
It is critical for themodify_approximation() step to perform
modify trust regions) which assure convergence of the sequentia

STATUS: Operational, but undergoing convergence enhanceme

Evaluate
Modify e
Add new

Main loop:
approxModel.build_approximation();
while (conv_metric > conv_tol) {

selectedIterator.run_iterator();
v_star = selectedIterator.best_variables();
r_star = actualModel.compute_response(v_star);
approxModel.modify_approximation(r_star);
approxModel.update_approximation(v_star,r_star);

}

Initialize app

Get appr
Optimize

DAK ertainty 107

C
O

S

D

In

C

in the
ty selection

ncertainty

del and
rator) are
sign variables into a

hrough the use of one
 variables into a set of
rates on
rates on
athe mappings for

mappings based
red statistics for the

ter loop which seeks to
f failure). The
stic quantity (e.g.,
evaluation.
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Optimization Under Unc

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Optimization Under Uncertainty

The optimization under uncertainty strategy is implemented with
NonDOptStrategyclass and is invoked with theopt_under_uncertain
in the user’s strategy section specification (seeOptimization Under U
Commands for additional specification details).

In theopt_under_uncertainty strategy, two models (designMo
uncertainModel) and two iterators (optIterator andnonDIte
constructed. ThedesignModel provides a mapping of a set of de
set of design responses (an objective function and constraints) t
interface, whereas theuncertainModel maps a set of uncertain
uncertain responses through another interface. TheoptIterator ite
designModel in the optimization loop and thenonDIterator ite
uncertainModel in the uncertainty quantification loop. Note tht
both models are deterministic; it is the ensemble ofuncertainModel
on the set of uncertain variable realizations that provide the desi
uncertain responses.

In the case of a nested approach, the optimization loop is the ou
optimize a nondeterministic quantity (e.g., minimize probability o
uncertainty quantification inner loop evaluates this nondetermini
compute the probability of failure) on each optimization function

DAK ertainty 108

C
O

S

D

In

C

y are executed in repeated
antification to the design
tive and constraints in
omputed (e.g., to adjust

g the stress allowables).
ded expense of nested
euristic and application-
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Optimization Under Unc

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version
For a segregated approach, the loops are not nested, rather the
succession until convergence. The coupling of the uncertainty qu
process occurs through the adjustment of the optimization objec
order to modify the statistical performance of the optimal design c
the probability of failure of a minimum weight design by changin
The nested approach is desirable since it removes the compoun
loops; however, the logic for modifying the design objectives is h
dependent.

STATUS: Under development. Not yet operational.

DAK d 109

C
O

S

D

In

C

Strategy class and
rategy section
cification details).

d Phillips, C.A.,
ies ([Eldred, M.S.,
mixed continuous and
anching) and nonlinear
constraints (bounding).
OTA User’s Instructions (6/11/99) Capability Overview - Strategy Capabilities - Branch and Boun

apability
verview

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
apabilities

Draft Version

Branch and Bound

The branch and bound strategy is implemented within theBranchBnd
is invoked with thebranch_and_bound selection in the user’s st
specification (seeBranch and Bound Commands for additional spe

It employs the PICO branching engine ([Eckstein, J., Hart, W.E., an
1997]) in combination with DAKOTA’s multilevel parallelism facilit
and Schimel, B.D., 1999]) to enable parallel solution of nonlinear
discrete problems through parameter domain decomposition (br
solution of optimization subproblems with relaxation of integrality

STATUS: Operational. To be available in DAKOTA V1.2.

DAKOTA User’s Instruct 110

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DA
Intr

i Blue text
indicates

a link to more
information.

Da

Th

Th

Th

Fa

Th

ximation
n evaluations

n Interface

ion Interface

n Interface
ions (6/11

KOTA
oduction

kota In

e Appli

e Direc
3-pie
1-pie

e Syste
3-pie
1-pie
Addit
Exam
DAKO

ilure ca
Failu
Failu
Failu

e Appr
Build
Upda
/99) Simulation Interfacing - Main Menu

m Call Application Interface
ce Interface
ce Interface
ional Features
ples
TA File Data Formats

pturing
re detection
re communication
re recovery

oximation Interface
ing an approximation
ting an approximation
Capability
Overview

Simulation
Interfacing

DAKOTA
Commands

Draft Version

Exploiting
Parallelism

Simulation Interfacing
terface Abstraction

cation Interface

t Function Application Interface
ce Interface
ce Interface

Modifying an appro
Performing functio

The RSM Approximatio

The MARS Approximat

The ANN Approximatio

DAK 111

S

D

In

S
In

terface abstraction. This
rs into a set of responses
entation of this
 use of a variety of
hich shares this common
uation mechanisms
sponse approximations,
d communication
ction invocations with
r either direct
all and direct function
iplinary simulations for
 is a natural extension
 binding with
ith Sandia’s CORBA-
n to the supported
the breadth of possible

valuation mechanisms
rchy shown in
oint from which
OTA User’s Instructions (6/11/99) Simulation Interfacing - Dakota Interface Abstraction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Dakota Interface Abstraction

DAKOTA’s interfacing capabilities are encompassed within an in
abstraction is the general concept of mapping a set of paramete
for the purpose of performing a function evaluation. The implem
abstraction within theDakotaInterface class hierarchy involves the
evaluation mechanisms and communication protocols, each of w
functionality of parameter to response mapping. Supported eval
currently include interfacing with simulation codes, employing re
and employing internal testing functions. And currently supporte
protocols include system calls with file communication, direct fun
parameter list communication, and parallel message-passing (fo
communication with simulations or in combination with system c
invocation and communication). In addition, coordination of disc
multidisciplinary optimization with the global sensitivity equations
to the supported evaluation mechanisms, and CORBA and JAVA
geographically distributed analysis services (e.g., for interface w
based Product Realization Environment) is an attractive extensio
communication protocols. These additions will continue to extend
DAKOTA problem solving environments.

DAKOTA provides a framework for the implementation of these e
and communication protocols within theDakotaInterface class hiera
Figure 18. TheDakotaInterface base class provides the starting p

DAK 112

S

D

In

S
In

ontains the virtualmap
ement its particular
urthermore, this base class
pe idiom design. The
es mechanisms for

ny derived class) and for
., 1992].

vide base classes for
roximations, respectively.
 interfaced using
nction calls (the
face communicates
e, data formats are very
function application
ctly to the simulation; files
ng simulations which are
OTA User’s Instructions (6/11/99) Simulation Interfacing - Dakota Interface Abstraction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

specialized interface mechanisms are created. This base class c
function which each derived class must redefine in order to impl
mechanism for generating responses from a set of parameters. F
provides the envelope for derived letter classes in a letter/envelo
letter/envelope idiom is an advanced C++ construct which provid
enhanced polymorphism (the envelope is a generic handle for a
smart memory management through reference counting[Coplien, J.O

Figure 18 The DakotaInterface class hierarchy

TheApplicationInterface andApproximationInterface classes pro
those interfaces dealing with simulation codes and response app
Within theApplicationInterface branch, simulation codes may be
system calls (theSysCallApplicInterface class) or through direct fu
DirectFnApplicInterface class). The system call application inter
with the simulation it spawns through the use of files. In this cas
important (seeDAKOTA File Data Formats). However, in the direct
interface case, C++ references to data structures are passed dire
and specialized data formats are not needed. In addition to invoki

DakotaInterface

ApproximationInterfaceApplicationInterface

DirectFnSysCall RSMANN MARS MPA

DAK 113

S

D

In

S
In

n interface is also used
al purpose.

oximations which can
nterface ,
ent artificial neural

regression splines,
for implementing
must implement methods
tions with the
OTA User’s Instructions (6/11/99) Simulation Interfacing - Dakota Interface Abstraction

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

linked into the DAKOTA executable, the direct function applicatio
for algorithm testing with internal test functions, so it serves a du

TheApproximationInterface branch implements a variety of appr
be used as surrogates in place of actual simulations. TheANNApproxI
RSMApproxInterface , andMARSApproxInterface classes implem
networks, response surface methods, and multivariate adaptive
respectively. In addition, anMPAApproxInterface class is planned
multipoint approximations. Each of these approximation classes
for building, updating, modifying, and performing function evalua
approximation.

DAK 114

S

D

In

S
In

eters (e.g., the vector of
tion, constraints, and
ities of a given problem
cs and implementation
19. External to that
neric and abstract.
aces is a cornerstone of
ods”).

nts. The input filter
ich transforms the set
lator program. The
ver program/script is
nd/or progress
 provides another

ses
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The Application Interface

Figure 19 The Application Interface Concept

By providing a generic interface for the mapping of a set of param
design variables) into a set of responses (e.g., an objective func
sensitivities), the Application Interface hides the specific complex
from the iterator method. All of an application’s disciplinary specifi
details are encapsulated within the Application Interface box inFigure
box, the data flows between the iterator and the simulator are ge
Isolation of complexity through the development of generic interf
object-oriented design (the concept of “one interface, many meth

Housed within the Application Interface are three main compone
program (“IFilter” inFigure 19) provides a communication link wh
of DAKOTA input parameters into the input required by the simu
simulator program reads its input and computes its results (a dri
optional and is used to accomplish nontrivial command syntax a
monitoring). Finally, the output filter program (“OFilter” inFigure 19)

IFilter OFiltersimulator
program

Application Interface

Parameters Respon

Iterator

Optional
Analysis Driver

DAK 115

S

D

In

S
In

tion results and the
rams are generally

ability through the build-
t the input and output
and “output” relative to

ral ways. The two ways
 The former uses direct
onse mapping, whereas
ommunication to perform

a 1-piece interface may be
 following sections
application interface and

pplication interfaces,
erfaces are presented.
uation.
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

communication link through the recovery of data from the simula
computation of the desired response data set. The two filter prog
application specific, although it is a project goal to maximize reus
up of generic libraries of filtering capabilities over time. Note tha
filters are part of the Application Interface and are named “input”
the simulator program.

The Application Interface mapping can be accomplished in seve
currently in use are the direct function and system call methods.
invocation of linked-in functions to perform the parameter to resp
the latter uses system calls to external programs and file-based c
the mapping. In both of these cases, either a 3-piece interface or
used, which differ in whether or not they use filter programs. The
describe these two approaches as embodied in the direct function
system call application interface classes.

Following the discussion of the direct function and system call a
techniques for capturing simulation failures within application int
Failure recovery options include abort, retry, recover, and contin

DAK e 116

S

D

In

S
In

Interface

to invoke simulation
 internal test functions
nation, was used in the
., Meza, J.C., and
., 1995], and[Meza,
n and efficiency by
meter/response data. In
ulator program since,

cutable, the TWAFER
m call capabilities, the
ith either system calls or

n or new test function
ed:

changed into callable
t

sed for filter and
een filters and analysis
fSystem Call
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Direct Function Application Interfac

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The Direct Function Application

The direct function application interface capability may be used
codes which are linked into the DAKOTA executable or to invoke
for algorithm performance testing. This option, in an earlier incar
TWAFER CVD heater design application ([Moen, C.D., Spence, P.A
Plantenga, T.D., 1996], [Moen, C.D., Spence, P.A., and Meza, J.C
J.C., and Plantenga, T.D., 1995]) in order to improve data precisio
eliminating system calls for filter programs and file transfer of para
this earlier incarnation, a system call was still required for the sim
although the TWAFER filters were compiled into the Dakota exe
simulation code was not. In the current direct function and syste
entire parameter to response mapping must be accomplished w
direct function calls. No combinations are allowed.

In order to use the direct function capability with a new simulatio
(not previously interfaced), the following steps have to be perform

1. the functions to be invoked must have their main programs
functions with the following prototype:int function_name(cons
DakotaVariables& vars, const DakotaIntArray& asv,
DakotaResponse& response) . The same prototype is u
analysis programs (which departs from the distinctions betw
shown in the command line file name passing procedures oThe
Application Interface).

DAK e 117

S

D

In

S
In

e extended to

e new function object

uccessfully, both within
ize the new functions)

eotaVariables ,

ay include removal of
y replacing the objects
s), and installation of the

ssides, J., 1995]) for

rs in 3 separate steps. Each
, and
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Direct Function Application Interfac

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

2. the if-else blocks inDirectFnApplicInterface::execute() must b
include the new function names with the proper prototypes

3. the DAKOTA system must be recompiled and linked with th
files or libraries

Various header files will have to be included in order to compile s
theDirectFnApplicInterface class (in order for the class to recogn
and within the new functions themselves (in order to recognize thDak
DakotaIntArray , andDakotaResponse types).

The direct function capability is new and evolving. Future work m
the dependence of user-supplied routines on DAKOTA objects b
with more fundamental data structures (vectors of ints and double
“builder pattern” (see[Gamma, E., Helm, R., Johnson, R., and Vli
management of multiple user-supplied routines.

3-piece Interface

In the 3-piece case, the parameters to responses mapping occu
of the functions identified by theinput_filter , analysis_driver
output_filter specifications will be invoked in succession.

DAK e 118

S

D

In

S
In

perform the complete
eeded, then only one
hed through the use of
tput_filter
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Direct Function Application Interfac

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

1-piece Interface

If the analysis_driver specified in the interface section is to
parameters to responses mapping and no additional filters are n
function invocation will occur. This 1-piece interface is accomplis
the “NO_FILTER” option (the default) in theinput_filter andou
specifications.

DAK 119

S

D

In

S
In

rface

n driver by using the
 Ritchie, D.M.,

s with DAKOTA through
tes the need to modify
its standard invocation
nd post-processing. The
grams provide the
vide the communication

., Bohnhoff, W.J.,
 M.S., Outka,
R., and Chen, K.S.,
e process overhead than
little significance
call approach can suffer
cision in parameter and
tionality for the cases of
rams (the 1-piece

 interface is
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The System Call Application Inte

The system call approach invokes a simulation code or simulatio
system function from the C standard library ([Kernighan, B.W., and
1988]) to create a new process. This new process communicate
parameter and response files. The system call approach elimina
simulation source code since the simulation can be initiated via
procedure and then coordinated with any variety of tools for pre- a
simulation can be viewed as a “black box” for which the filter pro
communication links and the parameters and responses files pro
data. This approach has been widely used in[Eldred, M.S., Hart, W.E
Romero, V.J., Hutchinson, S.A., and Salinger, A.G., 1996], [Eldred,
D.E., Bohnhoff, W.J., Witkowski, W.R., Romero, V.J., Ponslet, E.
1996], and many others. The system call approach involves mor
the direct function approach; however, this is most often of very
compared to the expense of the simulations. Lastly, the system
from precision problems if care is not taken to preserve data pre
response file I/O. The following sections describe system call func
separate filter programs (the 3-piece interface) and no filter prog
interface).

3-piece Interface

The syntax of the system call that Dakota performs for a 3-piece

DAK 120

S

D

In

S
In

combined into a single
erson, G., and
parate system calls;
ss management (test and

command line and the
 command line. By
programs, Dakota can
d file names (e.g., UNIX

ber). Having the option
lations running in a

perform the complete
eeded, then only one
ccomplished through the
 and
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

(ifilter_name params.in; analysis_driver_name; ofilter_name results.out)

in which the input filter, analysis, and output filter processes are
system call through the use of semi-colons and parentheses (se[Ande
Anderson, P., 1986]). This single system call is equivalent to 3 se
however, they are bound together to simplify asynchronous proce
receive synchronization operations).

The input filter is passed the name of the parameters file on the
output filter is likewise passed the name of the results file on the
passing the names of files on the command lines of executable
communicate with these executables using unique and/or tagge
temporary files or root names tagged with function evaluation num
of using unique file names allows for multiple simultaneous simu
common disk space.

1-piece Interface

If the analysis_driver specified in the interface section is to
parameters to responses mapping and no additional filters are n
process will appear in the system call. This 1-piece interface is a
use of the “NO_FILTER” option (the default) in theinput_filter
output_filter specifications.

The system call syntax is:
(analysis_driver_name params.in results.out)

DAK 121

S

D

In

S
In

lts files are both passed on

ing, Unix temporary
n of these options, refer

stem calls performed
re echoed to stdout in

ser to control whether
orking directory. Default
 declutter working
cification, these files
ging communication

r to make the names of
 evaluation number to the

ult behavior has the
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Since there are no filters, the names of the parameters and resu
the command line to theanalysis_driver .

Additional Features

This section describes interfacing options for file saving, file tagg
files, and common filtering operations. For details on specificatio
to Interface Commands. When executing DAKOTA, the actual sy
as well as informational messages on file renaming or removal a
order for the user to verify proper operation of the software.

File saving

Thefile_save option in the interface specification allows the u
parameters and results files are retained or removed from the w
behavior is to remove files once their use is complete in order to
directories. However, by specifyingfile_save in the interface spe
will not be removed. This latter behavior is often useful for debug
between Dakota and simulator programs.

File tagging

Thefile_tag option in the interface specification allows the use
the parameters and results files unique by appending a function
root file names specified in theparameters_file andresults_file
specifications. Default behavior is to not tag these files. The defa

DAK 122

S

D

In

S
In

passing and always read
that nonunique file names
the other hand, by
come unique through
multiple simultaneous
es necessary to prevent
 by uniquely identifying
ve is used
tion but are then moved
d before the next

save request

he interface
n are Unix temporary
es as created by the
itchie, D.M.,

erface to retrieve the
cessary with Unix
sts will be ignored.

t recommended for the
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

advantage of allowing the user to ignore command line argument
and write to/from the same file names, but has the disadvantage
may be overwritten from one function evaluation to the next. On
specifyingfile_tag in the interface specification, these files be
the appended evaluation number. This is most often used when
simulations are running in a common disk space, since it becom
conflicts (file overwriting) between the simultaneous simulations
files according to their evaluation number.Special case:Whenfile_sa
without file_tag , untagged files are used in the function evalua
to tagged file names after the function evaluation is complete (an
evaluation starts) in order to prevent overwriting files for which afile_
has been given.

Unix temporary files

If parameters_file andresults_file are not included in t
specification, then the default mechanisms for file communicatio
files (e.g.,/usr/tmp/aaaa08861). These files have unique nam
tmpnam utility from the C standard library ([Kernighan, B.W., and R
1988]). This uniqueness makes it a requirement for the user’s int
names of these files from the command line. File tagging is unne
temporary files (since they are already unique); thus,file_tag reque
file_save requests will be honored, although this option is no
purpose of keeping the temporary file directory uncluttered.

DAK 123

S

D

In

S
In

mmon/generic filtering
iding mechanisms for
r new applications can
design variable linking
es on the output filter
l of filtering implemented
dditional filtering layer
active. That is, it is a

s a single script or
eters file name and a
 file and write the
xecutable named
ms.in” as the
 name, and

ystem calls with the
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Common filtering operations

A mechanism has been constructed for the implementation of co
operations which are relatively application-independent. By prov
common I/O filtering operations, the work in developing filters fo
be minimized. Examples of common filtering operations include
on the input filter side and filtering of noisy response time histori
side. These common filtering operations comprise a second leve
externally to the inner layer of application-specific filtering. This a
is encapsulated in theApplicationInterface class and is currently in
placeholder for future extensions.

Examples

The NO_FILTER option

In a 1-piece interface (the NO_FILTER option), the user provide
executable that accepts two command-line arguments: a param
responses file name. This executable must read the parameters
appropriate data to the responses file. If a user creates a script/e
“my_analysis” (the name of theanalysis_driver), selects “para
parameters_file name and “results.out” as theresults_file
employs the defaults of no file saving and no file tagging, then s
following syntax will be spawned by Dakota:

(my_analysis params.in results.out)

DAK 124

S

D

In

S
In

 used:

_file

mmand line arguments
latter two cases, the user
hange on each evaluation.
 are retrieved using
 1986]). In the case
singrgc (argument

D.M., 1988].
se, a shell script wrapper
mes (by, for example,
d moving the unique file

system call echo, e.g.:

itherfile_tag
ill be saved by moving
verwriting them on
 echoed:
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

If file_tag is requested, system calls like the following will be
(my_analysis params.in.1 results.out.1)

If UNIX temporary files are used (noparameters_file or results
specification), system calls like the following will be used:

(my_analysis /usr/tmp/aaaa20305 /usr/tmp/baaa20305)

In the first of these three cases, the user need not retrieve the co
since the same file names will be employed each time. With the
must retrieve the command line arguments since the file names c
In the case of a C-shell script, the two command line arguments
$argv[1] and$argv[2] (see[Anderson, G., and Anderson, P.,
of a C or C++ program, command line arguments are retrieved ua
count) andargv (argument vector)[Kernighan, B.W., and Ritchie,
Fortran 77 does not support command line arguments; in this ca
can be built around the Fortran program to handle unique file na
creating a tagged working directory for the Fortran simulation an
name to a hardwired file name within the working directory).

If file_save is not set, a file remove notification will follow the
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

If nonunique file names are to be saved (file_save is set without e
being set or UNIX temporary files being used), then these files w
them to tagged files after the evaluation is complete to prevent o
subsequent evaluations. In this case, the following notification is

Files with nonunique names will be tagged to enable file_save:
Moving params.in to params.in.1
Moving results.out to results.out.1

DAK 125

S

D

In

S
In

 to create separate input
ota and the simulator
file into an analysis code

tput filter translates the
ults file. If a user is
filter named
rams.in” as the
 name, and

ystem calls with the

 used:

_file

st retrieve the command
e file names change on
flag will result in

tions of this type:
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The named filter option

In a 3-piece interface (the named filter option), the user chooses
and output filters that perform the data translations between Dak
program. The input filter translates a standard Dakota parameters
input file, the simulator runs and produces data, and then the ou
analysis code output file or database into a standard Dakota res
employing ananalysis_driver named “my_analysis,” aninput_
“my_ifilter,” an output_filter named “my_ofilter,” selects “pa
parameters_file name and “results.out” as theresults_file
employs the defaults of no file saving and no file tagging, then s
following syntax will be spawned by Dakota:

(my_ifilter params.in; my_analysis; my_ofilter results.out)

If file_tag is requested, system calls like the following will be
(my_ifilter params.in.1; my_analysis; my_ofilter results.out.1)

If UNIX temporary files are used (noparameters_file or results
specification), system calls like the following will be used:

(my_ifilter /usr/tmp/aaaa22490; my_analysis; my_ofilter /usr/tmp/
baaa22490)

Similar to the 1-piece case, the user’s input and output filters mu
line arguments in the latter two of the three cases above since th
each evaluation. Identical to the 1-piece case, omitting thefile_save
the following action

Removing /usr/tmp/aaaa22490 and /usr/tmp/baaa22490

and use offile_save with nonunique file names will result in ac

DAK 126

S

D

In

S
In

 set of parameters into a
/output within interfaces
 interface). Depending

eters file in either
l parameterization using
, only one format is

 which contains the
rameters file has the
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Files with nonunique names will be tagged to enable file_save:
Moving params.in to params.in.1
Moving results.out to results.out.1

DAKOTA File Data Formats

The central purpose of simulation interfaces is the mapping of a
set of responses. DAKOTA uses its own format for this data input
which employfile transfer of data (i.e., the system call application
on the user’s interface specification, DAKOTA will write the param
standard or APREPRO format. The latter option simplifies mode
the APREPRO utility ([Sjaardema, G.D., 1992]). For the results file
supported.

Parameters file format (standard)

Prior to invoking an interface, DAKOTA creates a parameters file
current parameter values and a set of function requests. This pa
following standard format:

DAK 127

S

D

In

S
In

uble precision value,
s the total number of

mber of functions (m)
dynamic memory
y the current values

rs.
)

)

.

OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Figure 20 Parameters file data format, standard option

where “<int> ” denotes an integer value, “<double> ” denotes a do
and “... ” indicates omitted lines for brevity. The first line specifie
variables (n) with its identifier string “variables” followed by the nu
with its identifier string “functions.” These integers are useful for
allocation within a simulator or filter program. The nextn lines specif

Descriptive header

Continuous design va
(ncdv values and tags

Discrete design vars.
(nddv values and tags

Uncertain vars.

Continuous state vars
(ncsv values and tags)

Discrete state vars.
(ndsv values and tags)

Active set vector

(nuv values and tags)

(m values and tags)

<int> variables <int> functions

<double> <var_tag_cdv1>

<double> <var_tag_cdv2>

...

<double> <var_tag_cdvn>

<int> <var_tag_ddv1>

<int> <var_tag_ddv2>

...

<int> <var_tag_ddvn>

<double> <var_tag_uv1>

<double> <var_tag_uv2>

...

<double> <var_tag_uvn>

<double> <var_tag_csv1>

<double> <var_tag_csv2>

...

<double> <var_tag_csvn>

<int> <var_tag_dsv1>

<int> <var_tag_dsv2>

...

<int> <var_tag_dsvn>

<int> <asv_tag_1>

<int> <asv_tag_2>

...

<int> <asv_tag_m>

DAK 128

S

D

In

S
In

 the following order:
 and discrete state

ot present in the

le. The descriptors are
 have been specified,

ctor for each of them
 what data is required on
ote a 3-bit binary
d Hessian requests for a
sian, the middle bit
alue. The specific
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

and descriptors of all of the variables within the parameter set in
continuous design, discrete design, uncertain, continuous state,
variables. The lengths of these vectors add to a total ofn (that is,
ncdv +nddv +nuv+ncsv +ndsv =n). If any of the variable types are n

problem, then its block is omitted entirely from the parameters fi
those specified in the user’s Dakota input file, or if no descriptors
default descriptors are used. The nextm lines specify the request ve
functions in the response data set. These integer codes indicate
the current function evaluation. Integer values of 0 through 7 den
representation of all possible combinations of value, gradient, an
particular function, with the most significant bit denoting the Hes
denoting the gradient, and the least significant bit denoting the v
translations are shown inTable 8.

Table 8 Request vector codes

Integer
Code

Binary
representation

Meaning

7 111 Get Hessian, gradient, and value

6 110 Get Hessian and gradient

5 101 Get Hessian and value

4 100 Get Hessian

3 011 Get gradient and value

2 010 Get gradient

1 001 Get value

DAK 129

S

D

In

S
In

 the type of function data
roviding a mechanism for

the same ordering is used
are associated with their

re 21:
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

This request vector accomplishes two operations: (1) it manages
that is needed, and (2) it implements the active set strategy by p
distinguishing between active and inactive functions.

Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and
as in the standard format. The difference is that numerical values
tags within$$ { tag = value } constructs as shown in Figu

0 000 Get nothing, function is inactive

Table 8 Request vector codes

Integer
Code

Binary
representation

Meaning

DAK 130

S

D

In

S
In

 template file (using an
ts as variable definitions
late file.

r

 vars.
gs)

rs.
ags)

vars.
gs)

s.
ags)

gs)

s)
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Figure 21 Parameters file data format, APREPRO option

When a parameters file in APREPRO format is included within a
include directive), the APREPRO utility recognizes these construc
which can then be used to populate targets throughout the temp

Descriptive heade

Continuous design
(ncdv values and ta

Discrete design va
(nddv values and t

Uncertain vars.

Continuous state
(ncsv values and ta

Discrete state var
(ndsv values and t

Active set vector

(nuv values and ta

(m values and tag

$$ { DAKOTA_VARS = <int> }
$$ { DAKOTA_FNS = <int> }
$$ { <var_tag_cdv1> = <double> }
$$ { <var_tag_cdv2> = <double> }
...
$$ { <var_tag_cdvn> = <double> }
$$ { <var_tag_ddv1> = <int> }
$$ { <var_tag_ddv2> = <int> }
...
$$ { <var_tag_ddvn> = <int> }
$$ { <var_tag_uv1> = <double> }
$$ { <var_tag_uv2> = <double> }
...
$$ { <var_tag_uvn> = <double> }
$$ { <var_tag_csv1> = <double> }
$$ { <var_tag_csv2> = <double> }
...
$$ { <var_tag_csvn> = <double> }
$$ { <var_tag_dsv1> = <int> }
$$ { <var_tag_dsv2> = <int> }
...
$$ { <var_tag_dsvn> = <int> }
$$ { ASV_1 = <int> }
$$ { ASV_2 = <int> }
...
$$ { ASV_M = <int> }

DAK 131

S

D

In

S
In

to read a file containing
ing to the set of function

sted, followed by a block
sian data. Function data

beonally supplied.
n optional field for
mpatibility. The tags are
ttern matching to detect
r tags are used, then they
haracters and there must
_1,” not “variable 1”).

tion

ient

sian

l tags)

s)

gs)
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Results file format

After completion of the interfacing processes, DAKOTA expects
response data for the current set of parameters and correspond
requests. This data must be in the following format:

Figure 22 Results file data format

The first block of data is the function values that have been reque
of requested gradient data, followed by a block of requested Hes
have no bracket delimiters and 1 character tag per function can opti
These tags are not used by DAKOTA and are only included as a
consistency with the parameters file format and for backwards co
rendered optional through DAKOTA’s use of regular expression pa
whether an upcoming field is numerical data or a tag. If characte
must be separated from data by either white space or new line c
not be any white space within a character tag (e.g., use “variable

Requested func

Requested grad

Requested Hes

<double> <fn_tag_1>
<double> <fn_tag_2>
...
<double> <fn_tag_m>
[<double> <double> ... <double>]
[<double> <double> ... <double>]
...
[<double> <double> ... <double>]
[[<double> <double> ... <double>]]
[[<double> <double> ... <double>]]
...
[[<double> <double> ... <double>]]

values (optiona

vectors (no tag

matrices (no ta

DAK 132

S

D

In

S
In

vector of

ce separating the brackets

.. matrix

e space separating the
t appear between the

uested function values
quested set of Hessians.
st vector, DAKOTA will

nd Hessian data is: if
unction derivatives
eeded with respect to

the types of continuous
f study being performed.
s are only needed with
 the information

 for nondeterministic
, function derivatives are
 lastly, parameter

formation do not draw a

d ngrad×
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Function gradient vectors are delimited with single brackets [...ngrad -

doubles...]. Tags are not used and must not be present. White spa
from the data is optional.

Function Hessian matrices are delimited with double brackets [[.

of doubles...]]. Tags are not used and must not be present. Whit
brackets from the data is optional, although white space must no
double brackets.

DAKOTA will read the data in three passes, getting the set of req
first, followed by the requested set of gradients, followed by the re
If the amount of data in the file does not match the function reque
abort with a response recovery format error message.

An important question for proper management of both gradient a
several different types of variables are used,for which variables are f
needed? That is, how isngrad determined? Derivatives are never n

any discrete variables (since these derivatives do not exist) and
variables for which derivatives are needed depend on the type o
For optimization and least squares problems, function derivative
respect to thecontinuous design variables (ngrad =ncdv) since this is

used by the optimizer in computing a search direction. Similarly,
analysis methods which use gradient and/or Hessian information
only needed with respect to theuncertain variables (ngrad =nuv). And

study methods which are cataloguing gradient and/or Hessian in

ngra

DAK 133

S

D

In

S
In

atives must be supplied
+nuv+ncsv). This

or optimization and least
terministic analysis
 the specification of
p these additional

he internal computations
additional variables are

f (currently,
e responses keyword
d previously, whereas
l” data set (the full
lem as specified in the
ase will allow the user to
content of the active set
te for those cases in
turning more data than
tor Usage in the
d description.
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

distinction among continuous variables; therefore, function deriv
with respect toall continuous variablesthat are specified (ngrad =ncdv

is generally not as complicated as it sounds, since it is common f
squares problems to only specify design variables and for nonde
problems to only specify uncertain variables. DAKOTA allows for
additional types of variables in these cases and DAKOTA will ma
variables through the interface, but since they will not be used in t
of the iterator, the derivatives of the function set with respect to the
not needed.

Active set vector control

A future capability will be the option to turn the ASV controlon or of
dakota.input.spec has a placeholder for this capability in th
section). ASV control set toon is the default operation as describe
ASV control set tooff will cause Dakota to always request a “ful
function, gradient, and Hessian data that is available in the prob
responses specification) on each function evaluation. This latter c
simplify the supplied interface by removing the need to check the
vector on each evaluation. Of course, this will be most appropria
which only a relatively small penalty in efficiency occurs when re
may be needed on a particular function evaluation. SeeActive Set Vec
Responses section of the Commands chapter for a more detaile

DAK 134

S

D

In

S
In

ponding results files.

s follows:

lowed by the number
n variables and their
tags for the variables are
user’s dakota input file or
tive set vector is equal to
t with an objective
total), the first ASV value
re associated with the
e user).

as follows:
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Examples

Shown are several examples of parameters files and their corres

A typical input file for 2 variables (n = 2) and 3 functions (m = 3) is a
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

1 ASV_1
1 ASV_2
1 ASV_3

The number of design variables (n) and the string “variables” are fol
of functions (m) and the string “functions”, the values of the desig
tags, and the active set vector (ASV) and its tags. The descriptive
always present and they are either the descriptors specified in the
are default descriptors if none were provided. The length of the ac
the number of functions (m). In the case of an optimization data se
function and two nonlinear constraints (three response functions
is associated with the objective function and the remaining two a
constraints (in whatever consistent order has been defined by th

For the APREPRO format option, the same set of data appears
$$ { DAKOTA_VARS = 2 }
$$ { DAKOTA_FNS = 3 }
$$ { cdv_1 = 1.5000000000e+00 }
$$ { cdv_2 = 1.5000000000e+00 }
$$ { ASV_1 = 1 }
$$ { ASV_2 = 1 }
$$ { ASV_3 = 1 }

DAK 135

S

D

In

S
In

g = value }

r program and -
ters file and writing the
ince the ASV contains all
nput file would contain

cceptable:
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

where the numerical values are associated with their tags within$${ ta
constructs.

The user-supplied application interface, comprised of a simulato
optionally - filter programs, is responsible for reading the parame
results file containing the response data requested in the ASV. S
ones in this case, the response file corresponding to the above i
values for the three functions:

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2

Since function tags are optional, the following would be equally a
1.2500000000e-01
1.5000000000e+00
1.7500000000e+00

For the same parameters with different ASV components,
2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

3 ASV_1
3 ASV_2
3 ASV_3

the following response data is required:
1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01]
[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

DAK 136

S

D

In

S
In

gradients. Modifying the

umably since the

ion, its gradient vector,

000e+00]]

ariables present:
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Here, we need not only the function values, but also each of their
ASV components again gives the following parameters file,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

2 ASV_1
0 ASV_2
2 ASV_3

for which the following results file is needed:
[5.0000000000e-01 5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

Here, we needed gradients for functionsf andc2 , but not forc1 pres
constraint is inactive.

A full Newton optimizer might well make the following request:
2 variables 1 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

7 ASV_1

for which the following results file (containing the objective funct
and its Hessian matrix) is needed:

1.2500000000e-01 f
[5.0000000000e-01 5.0000000000e-01]
[[3.0000000000e+00 0.0000000000e+00 0.0000000000e+00 3.0000000

Lastly, a more advanced example might have multiple types of v
11 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2

2 ddv_1
2 ddv_2
2 ddv_3

3.5000000000e+00 csv_1

DAK 137

S

D

In

S
In

 upon the type of study
 needed with respect to
onse data would be

ifferent types of
ct to all continuous

+01

e+00

e+00
OTA User’s Instructions (6/11/99) Simulation Interfacing - The System Call Application Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

3.5000000000e+00 csv_2
3.5000000000e+00 csv_3
3.5000000000e+00 csv_4

4 dsv_1
4 dsv_2
3 ASV_1
3 ASV_2
3 ASV_3

In this case, the required length of the gradient vectors depends
being performed. In an optimization problem, gradients are only
the continuous design variables, in which case the following resp
appropriate (ngrad =2):

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01]
[3.0000000000e+00 -5.0000000000e-01]
[0.0000000000e+00 3.0000000000e+00]

In a parameter study, however, no distinction is drawn between d
continuous variables and gradients would be needed with respe
variables (ngrad =6), e.g.:

1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2
[5.0000000000e-01 5.0000000000e-01 6.2500000000e+01 6.2500000000e

6.2500000000e+01 6.2500000000e+01]
[3.0000000000e+00 -5.0000000000e-01 0.0000000000e+00 0.0000000000

0.0000000000e+00 0.0000000000e+00]
[0.0000000000e+00 3.0000000000e+00 0.0000000000e+00 0.0000000000

0.0000000000e+00 0.0000000000e+00]

DAK 138

S

D

In

S
In

 codes within both its
nsists of three
ecovery.

ndent, it is the user’s
utput_filter .
ulation’s internal

thin a user’s script to
xample, the following

TA if thegrep
le.

, then failure detection
e mesh distorting
stence to detect a
OTA User’s Instructions (6/11/99) Simulation Interfacing - Failure capturing

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Failure capturing

DAKOTA provides the capability to manage failures in simulation
system call and direct application interfaces. Failure capturing co
operations: failure detection, failure communication, and failure r

Failure detection

Since the symptoms of a simulation failure are highly code-depe
responsibility to detect failures within theiranalysis_driver or o
One popular example of simulation monitoring is to rely on a sim
detection of errors. In this case, the Unixgrep utility can be used wi
detect strings in output files which indicate analysis failure. For e
script excerpt

grep ERROR analysis.out > /dev/null
if ($status == 0)

echo “FAIL” > results.out
endif

will pass theif test and communicate simulation failure to DAKO
command finds the stringERROR anywhere in theanalysis.out fi

If the simulation code is not providing error diagnostic information
may require monitoring of simulation results for sanity (e.g., is th
excessively?) or potentially monitoring for continued process exi

DAK 139

S

D

In

S
In

mplicated, the flexibility
proaches.

OTA can attempt to
s on the type of

on failure is
e user’s
ce interface).

 “ fail ” should
fter the fail string will not

lure is communicated to
er (for either
r the direct interface is

heint returned is
re occurs.
OTA User’s Instructions (6/11/99) Simulation Interfacing - Failure capturing

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

simulation segmentation fault or core dump. While this can get co
of DAKOTA’s interfaces allows for a wide variety of monitoring ap

Failure communication

Once a failure is detected, it must be communicated so that DAK
recover from the failure. The form of this communication depend
application interface in use.

System call application interfaces

In the system call application interface case, a detected simulati
communicated to DAKOTA through the results file returned by th
analysis_driver (1-piece interface) oroutput_filter (3-pie
Instead of returning the standard results file data, the string “FAIL ” or
appear at the beginning of the results file. Any data appearing a
be read.

Direct application interfaces

In the direct application interface case, a detected simulation fai
DAKOTA through the return code provided by the user’sanalysis_driv
the 1-piece or the 3-piece interface). Recall that the prototype fo
int function_name(const DakotaVariables& vars, const
DakotaIntArray& asv, DakotaResponse& response) . T
the failure code: 0 (false) if no failure occurs and 1 (true) if a failu

DAK 140

S

D

In

S
In

attempt to recover from
by the user’s input
ded inInterface

n detecting a failure.
OTA’s restart capability

ailed simulation up to
 on each of these retries,
 cases in which
ironment issues, such as

t the failed simulation
e results of the function
fied by the user. Any
e zero. This option is
OTA User’s Instructions (6/11/99) Simulation Interfacing - Failure capturing

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Failure recovery

Once the analysis failure has been communicated, DAKOTA will
the failure using one of the following mechanisms, as governed
specification. Additional details on these specifications are provi
Commands.

Abort

If the abort option is specified, then DAKOTA will terminate upo
Note that if the problem causing the failure can be corrected, DAK
(seeRestart Management) can be used to continue the study.

Retry

If the retry option is specified, then DAKOTA will reinvoke the f
the specified number of retries. If the simulation continues to fail
DAKOTA will terminate. The retry option is appropriate for those
simulation failures may be resulting from transient computing env
disk space.

Recover

If the recover option is specified, then DAKOTA will not attemp
again. Rather, it will return a “dummy” set of function values as th
evaluation. The dummy function values to be returned are speci
gradient or Hessian data requested in the active set vector will b

DAK 141

S

D

In

S
In

icate a region of the
 to return a large objective
zer from further

mpt to step towards
hrough the use of a
s in which a failed
“distance” between the
rmation from one step
tinuation method can step
nvergence of the

l evaluation (the source
 retried. This halving is
n marches towards the
rs while marching
ontinuation algorithm is
aluations from source to

tion invocations, the
n program. For example,
OTA User’s Instructions (6/11/99) Simulation Interfacing - Failure capturing

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

appropriate for those cases in which a failed simulation may ind
design space to be avoided and the dummy values can be used
function or a constraint violation which will discourage an optimi
investigating the region.

Continuation

If the continuation option is specified, then DAKOTA will atte
the failing “target” simulation from a nearby “source” simulation t
continuation algorithm. This option is appropriate for those case
simulation may be caused by an inadequate initial guess. If the
source and target can be divided into smaller steps in which info
provides an adequate initial guess for the next step, then the con
towards the target in increments sufficiently small to allow for co
simulations.

When the failure occurs, the interval between the last successfu
point) and the current target point is halved and the evaluation is
repeated until a successful evaluation occurs. The algorithm the
target point using the last interval as a step size. If a failure occu
forward, the interval will be halved again. Each invocation of the c
allowed a total of ten failures (ten halvings result in up to 1024 ev
target) prior to aborting the DAKOTA process.

While DAKOTA manages the interval halving and function evalua
user is responsible for managing the initial guess for the simulatio

DAK 142

S

D

In

S
In

, Cairncross, R.A.,
uess data and writing
ntinuation algorithm, the
opying the solution data
 current evaluation (and
ever, techniques are

ction evaluation
he continuation
 (e.g., genetic
ssarily be in the vicinity
ave and manipulate
 the results from a
ation of the closest
OTA User’s Instructions (6/11/99) Simulation Interfacing - Failure capturing

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

in GOMA ([Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S.
1995]), the user specifies the files to be used for reading initial g
solution data. When using the last successful evaluation in the co
translation of initial guess data can be accomplished by simply c
file leftover from the last evaluation to the initial guess file for the
in fact this is useful for all evaluations, not just continuation). How
under development for use of theclosest, previously successful, fun
(rather than thelast successful evaluation) as the source point in t
algorithm. This will be especially important for nonlocal methods
algorithms) in which the last successful evaluation may not nece
of the current evaluation. This approach will require the user to s
previous solutions (likely tagged with evaluation number) so that
particular simulation (specified by DAKOTA after internal identific
point) can be used as the current simulation’s initial guess.

DAK 143

S

D

In

S
In

variety of
lace of actual simulations.
artificial neural
regression splines,
d for implementing
n their own for direct
tion strategy (see

n of computational
luations that need to be

n initial approximation
roximation with new
fying the form or
 function), and
tual function).

l points, performing the
 results of the trial
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Approximation Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The Approximation Interface

TheApproximationInterface branch (seeFigure 18) implements a
approximation techniques which can be used as surrogates in p
TheANN, RSM, andMARS approximation interfaces implement
networks, response surface methods, and multivariate adaptive
respectively. In addition, anMPA approximation interface is planne
multipoint approximations. These approximations can be used o
interfacing with any iterator or as part of a sequential approxima
Sequential Approximate Optimization).

The primary goal in surrogate-based optimization is the reductio
expense through the minimization of the number of function eva
performed with the actual expensive model.

All of the approximation interfaces define methods for building a
(thebuild_approximation virtual function), updating the app
data points (theupdate_approximation virtual function), modi
extent of the approximation (themodify_approximation virtual
performing a function evaluation using the approximation (themap vir

Building an approximation

Building an initial approximation consists of selecting a set of tria
trial function evaluations on the actual model, and then using the

DAK 144

S

D

In

S
In

l coefficients, neural
tions in the response set
eparate approximation is

ponse data from the same

rom the actual model
ng higher-order
AKOTA, the set of trial
a, J.C., 1997]) for
pproximation coefficients
mposition.

available from the actual
 best point found in an
el. This new information
ess. If improvement is
hen the new function
next approximate cycle.

to solve for new
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Approximation Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

function evaluations to solve for the coefficients (e.g., polynomia
network weights) of the approximation. If there are multiple func
(e.g., an objective function plus one or more constraints), then a s
built for each function, although each approximation uses the res

trial points. Currently, only 0th-order information (function values) f
is used in building the approximation, although extensions to usi
information (function gradients and Hessians) are possible. In D
points is determined via the DDACE package ([Tong, C.H., and Mez
design and analysis of computer experiments. Solution for the a
is performed using either LU factorization or singular value deco

Updating an approximation

An approximation can be updated whenever new information is
model. In sequential approximate optimization, for example, the
approximate optimization cycle is evaluated with the actual mod
is first used to assess performance and convergence of the proc
observed and the convergence criteria have not been satisfied, t
evaluation information is used to update the approximation for the
This will typically involve another factorization or decomposition
approximation coefficients.

DAK 145

S

D

In

S
In

ed on its performance.
red by the evaluation of
actual model), then it is
tion. Conversely, if the

rease the extent of the
AKOTA is implementing

es, must implement the
r to response mapping.

 evaluation. Since the
on interfaces are
f the interface can be

d.

se mapping involves an
meter set. All of the

ion values) and some

te function gradients)
d (e.g., a quadratic
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Approximation Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

Modifying an approximation

It is often desirable to modify the extent of an approximation bas
For example, if the approximation is performing poorly (as measu
the best point found in an approximate optimization cycle with the
desirable to restrict the extent (i.e., the bounds) of the approxima
approximation is performing well, then it may be desirable to inc
approximation so that larger changes can occur on each cycle. D
trust region concepts to manage the extent of approximations.

Performing function evaluations

Each of the approximation interfaces, like the application interfac
virtual map function in order to provide a mechanism for paramete
This is the function invoked when an iterator requests a function
function evaluation mechanisms for application and approximati
implemented within a single virtual function, the particular form o
hidden from the iterator and this complexity can be encapsulate

In the case of an approximation interface, a parameter to respon
inexpensive evaluation of the approximation for a particular para

approximations can return 0th-order information (approximate funct

approximations can directly return 1st-order information (approxima
in those cases where the approximate form is easily differentiate

DAK 146

S

D

In

S
In

improve the accuracy
e approximation.
OTA User’s Instructions (6/11/99) Simulation Interfacing - The Approximation Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

polynomial approximation). Availability of analytic gradients can
and efficiency of performing a gradient-based optimization on th

DAK 147

S

D

In

S
In

e

hod which assumes a

(7)

l model, the RSM
actorization.

vided in future
OTA User’s Instructions (6/11/99) Simulation Interfacing - The RSM Approximation Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The RSM Approximation Interfac

The RSM Approximation Interface uses a response surface met
quadratic polynomial of the form:

Following evaluation of the DDACE sample points with the actua
approximation coefficients (c0, ci , cij) are computed with an LU f

This capability is new and evolving. Additional details will be pro
documentation releases.

c 0 c i x i c ij x i x j
j 1=

n

∑
i 1=

n

∑+

i 1=

n

∑+

DAK 148

S

D

In

S
In

ace

egression splines from
ford University. An
DACE package ([Tong,

vided in future
OTA User’s Instructions (6/11/99) Simulation Interfacing - The MARS Approximation Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The MARS Approximation Interf

The MARS Approximation Interface uses multivariate adaptive r
the MARS3.5 package ([Friedman, J. H., 1991]) developed at Stan
object-oriented interface to the Fortran library is provided by the D
C.H., and Meza, J.C., 1997]).

This capability is new and evolving. Additional details will be pro
documentation releases.

DAK 149

S

D

In

S
In

e

ificial neural network
.C., 1996]).
l model, the ANN

vided in future
OTA User’s Instructions (6/11/99) Simulation Interfacing - The ANN Approximation Interface

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

imulation
terfacing

The ANN Approximation Interfac

The ANN Approximation Interface uses a layered perceptron art
based on the direct training approach of Zimmerman ([Zimmerman, D
Following evaluation of the DDACE sample points with the actua
weights are computed with an SVD decomposition.

This capability is new and evolving. Additional details will be pro
documentation releases.

DAKOTA User’s Instruct 150

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DA
Intr

i Blue text
indicates

a link to more
information.

Pa

En

Im

Sp

Ru
ions (6/11/99) Exploiting Parallelism - Main Menu

Capability
Overview

Exploiting
Parallelism

KOTA
oduction

DAKOTA
Commands

Draft Version

Simulation
Interfacing

Exploiting Parallelism

rallelism Introduction

abling Software Components
Direct function synchronization
System call synchronization
Master-slave algorithm

Single-level parallelism
Multilevel parallelism

plementation of Parallelism
Single-processor DAKOTA implementation
Multiprocessor DAKOTA implementation

ecifying Parallelism
The Model
The Iterator
Single-processor DAKOTA specification
Multiprocessor DAKOTA specification

nning a parallel DAKOTA job
Single-processor DAKOTA execution
Multiprocessor DAKOTA execution

DAK 151

E
P

S

D

In

e categorized into four

es the exploitation
ptimization algorithms

tions, speculative

oordinate pattern

periments (DACE)
al networks.
anch and bound,
ic local search.

the basic
ternal linear algebra) in
on problems and

imultaneous
function evaluation,
functions requiring
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Parallelism Introduction

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Parallelism Introduction

The opportunities for exploiting parallelism in optimization can b
main areas:

1. Algorithmic coarse-grained parallelism: This parallelism involv
of multiple independent function evaluations. Examples of o
containing coarse-grained parallelism include:
a.)Gradient-based algorithms: finite difference gradient evalua
optimization, parallel line search, multiple-secant BFGS.
b.) Nongradient-based algorithms: genetic algorithms (GA’s), c
search (CPS), parallel direct search (PDS), Monte Carlo.
c.) Approximate methods: design and analysis of computer ex
evaluations for building response surfaces and training neur
d.) Multi-method strategies: optimization under uncertainty, br
multi-start local search, island-model GA’s, GA’s with period

2. Algorithmic fine-grained parallelism: This involves computing
computational steps of an optimization algorithm (i.e., the in
parallel. This is primarily of interest in large-scale optimizati
simultaneous analysis and design (SAND).

3. Function evaluation coarse-grained parallelism: This involves s
computation of separable (i.e., uncoupled) parts of a single
where a function evaluation may contain multiple response

DAK 152

E
P

S

D

In

s for multiple objectives
DO, etc.

llelization of the
ndia-developed MP

LEGRA, PCTH,

ined parallelization
re essentially “free,”
unication as the number

able computations to utilize
r hand, involves much
 to avoid the case of
ds among processors

d.

grained parallelism or
ed in previous work
son, S.A., and
aches which utilize
rallel optimization of
dent evaluations per
by the practical limit on
re inter-process
ervations point clearly to
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Parallelism Introduction

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
multiple simulations. Examples include separate simulation
and constraint functions, multiple disciplinary analyses for M

4. Function evaluation fine-grained parallelism: This involves para
solution steps within a single analysis code. Examples of Sa
analysis codes include PRONTO3D, COYOTE, MPSalsa, A
SIERRA, etc.

In both the algorithmic and function evaluation cases, coarse-gra
requires very little inter-processor communication and is therefo
meaning that there is little loss in parallel efficiency due to comm
of processors increases (assuming that there are enough separ
the additional processors). Fine-grained parallelism, on the othe
more communication among processors and care must be taken
inefficient machine utilization in which the communication deman
outstrip the amount of actual computational work to be performe

Single-level approaches which exploit either algorithmic coarse-
function evaluation fine-grained parallelism have been investigat
([Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchin
Salinger, A.G., 1996]). It has been shown that optimization appro
single-level parallelism can have clear performance barriers. Pa
single-processor simulations is limited by the number of indepen
cycle, and sequential optimization of parallel analyses is limited
processors that can be used for a single parallel simulation befo
communication dominates actual computational work. These obs

DAK 153

E
P

S

D

In

 strategies coordinate

xploited, how should the
the parallel efficiency of

., 1998] in which it
el parallelism when the
llelism of a given parallel
rlinear speedup). This
arallel studies. However,
alent, and in practice, it

ber of processors used for
ple, if an algorithm has

 function evaluations
n high parallel efficiency
-processor slave servers
ocessor slave servers and
asing to a total of 1001
 not having as high a

ize turn-around time.

arse-grained parallelism
TA framework. The
 coarse-grained

 Schimel, B.D.,
e components which
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Parallelism Introduction

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
the need for multilevel parallelism, in which parallel optimization
multiple simultaneous simulations of multiprocessor codes.

The question arises, then, if multiple types of parallelism can be e
amount of parallelism at each level be selected so as to maximize
the study? This question is answered in[Eldred, M.S., and Hart, W.E
is shown that maximum parallel efficiency is achieved in multilev
minimum number of processors is used for the fine-grained para
analysis (with the rare exception of a parallel analysis with supe
gives preference to the coarse-grained parallelism in multilevel p
maximum efficiency and minimum turn-around time are not equiv
is common to sacrifice efficiency for speed and increase the num
a given parallel analysis beyond the minimum required. For exam
10 independent function evaluations per cycle and each of these
needs a minimum of 50 processors to perform the simulation, the
can be achieved by dividing a total of 501 processors into ten 50
plus a master processor. This would be preferable to five 100-pr
far preferable to one 500-processor slave server. However, incre
processors and selecting 10 100-processor slave servers, while
parallel efficiency, might be desirable in practice in order to minim

The following discussions describe how to manage algorithmic co
and function evaluation fine-grained parallelism within the DAKO
remaining types (algorithmic fine-grained and function evaluation
parallelism) are not currently supported, although[Eldred, M.S., and
1999] describes recent progress in these directions. The softwar

DAK 154

E
P

S

D

In

f approaches for utilizing
scenarios. Finally, input
llel DAKOTA studies.
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Parallelism Introduction

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
enable parallelism are discussed first, followed by descriptions o
these components in implementing parallelism within a variety of
specification and execution details are provided for running para

DAK 155

E
P

S

D

In

llelism in a variety of
ve the flexibility to
sly. Synchronous
ompletion before control
uch that control is

, thereby allowing the
capabilities can be used
ternal means to assign
, or they can be
phisticated self-
).

ion Application
ctly into the DAKOTA

rmance testing. This
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Enabling Software Components

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Enabling Software Components

This section describes software components which enable para
forms. Direct function and system call interfacing capabilities ha
initiate function evaluations either synchronously or asynchronou
evaluations proceed one at a time with the evaluation running to c
is returned to DAKOTA. Asynchronous evaluations are initiated s
returned to DAKOTA immediately, prior to evaluation completion
initiation of multiple concurrent evaluations. The synchronization
by themselves to provide a simple parallelism which relies on ex
jobs to processors (seeSingle-processor DAKOTA implementation)
combined with DAKOTA’s master-slave algorithm to provide a so
contained parallelism (seeMultiprocessor DAKOTA implementation

Direct function synchronization

The direct function capability, described in detail inThe Direct Funct
Interface, is used to invoke simulation codes which are linked dire
executable or to invoke internal test functions for algorithm perfo
capability may be used synchronously or asynchronously:

DAK 156

E
P

S

D

In

e involves a standard
not return to the calling
as been populated.

, POSIX threads) to
a thread, control returns
ultiple threads can be
 the multiple threads of

lication Interface,
nction from the C

 used synchronously or

volves spawning the
ing code until the

this case, the possibility
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Enabling Software Components

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
Synchronous

Synchronous operation of the direct function application interfac
procedure call to a simulation linked within the code. Control does
code until the simulation is completed and the response object h

Asynchronous

Asynchronous operation involves the use of multithreading (e.g.
accomplish multiple simultaneous simulations. When spawning
to the calling code after the simulation is initiated. In this way, m
created simultaneously. An array of responses corresponding to
execution is recovered in a synchronize operation.

System call synchronization

The system call approach, described in detail inThe System Call App
invokes a simulation code or simulation driver by using thesystem fu
standard library to create a new process. This capability may be
asynchronously:

Synchronous

Synchronous operation of the system call application interface in
system call in the foreground. Control does not return to the call
simulation is completed and the response file has been written. In

DAK 157

E
P

S

D

In

g response recovery will

background, continuing
 checking for process
es corresponding to the

n is detected by testing
see[Kernighan,
this facility since it is
xistence test but the
te. In this case, the read
incomplete data set. In
ling which allows for a
 call evaluation. The
sponse format error
Therefore, to reduce the
 interface should
he directory where its
oaches: (1) delay the
omplete and all of the

form the simulation
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Enabling Software Components

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
of a race condition (see below) does not exist and any errors durin
cause an immediate abort of the DAKOTA process.

Asynchronous

Asynchronous operation involves spawning the system call in the
with other tasks (e.g., other simulation system calls), periodically
completion, and finally retrieving the results. An array of respons
multiple system calls is recovered in a synchronize operation.

In this synchronize operation, completion of a function evaluatio
for the existence of the evaluation’s results file using thestat utility (
B.W., and Ritchie, D.M., 1988]). Care must be taken when using
prone to the race condition in which the results file passes the e
recording of the function evaluation results in the file is incomple
operation performed by DAKOTA will result in an error due to this
order to address this problem, DAKOTA contains exception hand
fixed number of response read failures per asynchronous system
number of allowed failures must have a limit, so that an actual re
(unrelated to the race condition) will eventually abort the system.
possibility of exceeding the limit on allowable read failures,the user’s
minimize the amount of time an incomplete results file exists in t
status is being tested. This can be accomplished through two appr
creation of the results file until the simulation computations are c
response data is ready to be written to the results file, or (2) per

DAK 158

E
P

S

D

In

pleted results file into the

hen care must be taken to
the parameters and results
lation, must be protected
ulations. With respect to
e through the use of file
 if additional
ry to create a working

only files used by a
ich it writes results (e.g.,
to use either the
 default Unix

dependence between
itional files for input, run
g , model.e ,
’s number designators
an handle modified
hich the simulator can
s given inFigure 9 in the
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Enabling Software Components

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
computations in a subdirectory, and as a last step, move the com
main working directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, t
maintain independence of the concurrent analyses. In particular,
files for a simulation, as well as any other files used by the simu
from other files of the same name used by other concurrent sim
the parameters and results files, these files may be made uniqu
tagging or Unix temporary files (seeAdditional Features). However,
simulation files must be protected, then it will usually be necessa
subdirectory for each concurrent simulation. For example, if the
simulator are the files from which it reads parameters and to wh
the simple test problems inExample Problems), then it is sufficient
file_tag option (params.in.1 , results.out.1 , etc.) or the
temporary file option (/var/tmp/aaa0b2Mfv , etc.) to maintain in
concurrent simulations. If, however, a simulator needs to use add
diagnostics, and results databases (e.g.,model.i , model.o , model.
etc., for many SEACAS codes), then one could extract DAKOTA
and use them to tag all the other files (assuming the simulator c
filenames), or preferably, create a tagged working directory in w
execute in default mode. An example of this preferred approach i
Tutorial .

DAK 159

E
P

S

D

In

s function evaluations in
odel. It uses MPI

nir, M., Otto, S.,
unicate data
 a task pool design)
e case of heterogeneous
s, the self-scheduling
e master schedules the

 jobs; the first server to
y denotes that the same

 the MPMD model
A executable on the
bles on slave processors.
llowable by the

(SPMD model) entails a
omplished within DAKOTA at
 required iterators and models

egy is executed, the master
erver code bound to the current

ination message to the slaves
en the process repeats for the
ich allows for send/receive of a
e traffic, and (2) use of a

passing operations for particular
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Enabling Software Components

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Master-slave algorithm

DAKOTA contains a master-slave algorithm which self-schedule
a “single program-multiple data” (SPMD) parallel programming m
message-passing ([Gropp, W., Lusk, E., and Skjellum, A., 1994], [S
Huss-Lederman, S., Walker, D., and Dongarra, J., 1996]) to comm
between processors. The self-scheduling design (also known as
provides a simple load balancing which is particularly useful in th
processor speeds or varying simulation durations. In the first pas
algorithm assigns each slave server a job. In the second pass, th
remaining jobs on slave servers as they complete their previous
return its results gets the next job. The SPMD designation simpl
DAKOTA executable is loaded on all processors. This differs from
(“multiple program-multiple data”) which would have the DAKOT
master processor communicating directly with simulator executa
The MPMD model has some advantages, but it is not currently a
executable loading software (i.e.,yod) on Sandia’s MP machines.
Developer’s notes: Implementing the master-slave model within a single executable
division of iterator code (master) from function evaluation code (slave). This is acc
the strategy layer. In the strategy constructor, the master processor instantiates the
whereas the slave processors instantiate only the required models. When the strat
executes the current iterator and sends analysis requests to the slaves which run s
model. When the master completes iteration on the current model, it sends a term
which then exit the current model. If additional work remains within the strategy, th
next iterator and model. Additional features include: (1) the use of buffer packing wh
heterogeneous set of data within a single message and thereby minimizes messag
ParallelLibrary class hierarchy which encapsulates the specific syntax of message
message passing libraries.

DAK 160

E
P

S

D

In

ors. In the single-level
e global MPI
xt needed for master-
LD is sufficient for
vel parallel case of
to the multilevel parallel

to new intra-
 for each multiprocessor
 simulation for use as the
ables the analysis
 on an arbitrary set of
hin DAKOTA, new intra-
rder for the master
nicators are created with
s are created, the
e master are virtually
cial case of the multilevel
nd avoid the overhead of
ddition, communicator
ic repartitioning of
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Enabling Software Components

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
Single-level parallelism

DAKOTA uses MPI communicators to identify groups of process
parallel case employing many single-processor slave servers, th
communicator (MPI_COMM_WORLD) can directly provide the conte
slave communication since processor rank withinMPI_COMM_WOR
message source and destination information. The other single-le
employing one multi-processor slave server is treated identically
case described below.

Multilevel parallelism

For multilevel parallelism,MPI_COMM_WORLD can be partitioned in
communicators which delineate the set of processors to be used
analysis. Since these intra-communicators can be passed into a
simulation’s computational context, the use of communicators en
routines to be provided as a generic library utility that can be run
processors (which was one of the goals of the MPI standard). Wit
communicators are created with theMPI_Comm_split routine. In o
to send messages to the new intra-communicators, inter-commu
calls toMPI_Intercomm_create . Once the new communicator
single-level and multilevel algorithms for scheduling jobs from th
identical (in fact, the single-level case could be handled as a spe
case, but the DAKOTA design opted to maintain separate logic a
additional communicator creations for the single-level case). In a
partitions can be reallocated multiple times. This enables dynam

DAK 161

E
P

S

D

In

that manages multiple
se model followed by two

. This is conveniently
r partitioning schemes

ator strategies and
Schimel, B.D.,
optimization studies.
-slave control and four
hieve near linear scaling
able in the DAKOTA
ation of each type of
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Enabling Software Components

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
MPI_COMM_WORLDfor each simulation interface within a strategy
models (e.g., four 256 processor servers could be used for a coar
512 processor servers for subsequent iteration on a fine model)
managed by allocating and deallocating particular communicato
within the iterator/model loops of the strategy layer.

Pending Extensions

Recent work has focused on the development of concurrent-iter
concurrent-analysis function evaluations (refer to[Eldred, M.S., and
1999]) for exploiting additional coarse-grained parallelism within
These extensions result in a total of three nested tiers of master
levels of parallelism which can minimize efficiency losses and ac
on massively parallel computers. These capabilities will be avail
V1.2 release and will allow the convenient selection and combin
parallelism a particular application supports:

• Concurrent iterators within a strategy

• Concurrent function evaluations within an iterator

• Concurrent analyses within a function evaluation

• Multiprocessor analyses

DAK 162

E
P

S

D

In

ble parallelism can be
ture for enabling a

heter-slave
synchronization
 master-slave code can
, any of the available
ter-slave approach.

ws can be categorized
ocessor and relies on
he master-slave approach
ting simulations within

ation andSystem
rallelism even when the
e master-slave algorithm
g. Therefore, some
d to distribute the
gle processor is generally
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Implementation of Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Implementation of Parallelism

This section describes how the software components which ena
configured to perform particular parallel studies. An essential fea
variety of parallel processing scenarios is the independence of tMas
algorithm from the interfacing software described inDirect function
andSystem call synchronization. Since they are independent, the
utilize any of the available interfacing capabilities, or alternatively
interfacing capabilities can be employed with or without the mas

The approaches to exploiting parallelism which this flexibility allo
into two main areas: those in which DAKOTA runs on a single pr
external means to distribute simulations to remote processors (t
is notused), and those in which DAKOTA runs in parallel coordina
its allocation of processors (the master-slave approachis used).

Single-processor DAKOTA implementation

The asynchronous mappings described inDirect function synchroniz
call synchronizationcan be used to accomplish coarse-grained pa
DAKOTA process is running on a single processor. In this case, th
is not used and jobs are not assigned with MPI message-passin
additional mechanism external to DAKOTA will usually be desire
asynchronous jobs among processors, since multitasking on a sin

DAK 163

E
P

S

D

In

system call case, network
other native scheduling
nism, and in the
ed (e.g., to select nodes

e DAKOTA’s
sor jobs to the queues of

h multiple jobs is
. Moreover, each set of
 queue, such that an
 queue delays on each
. Nevertheless, if
 minimize repeated
hen this approach can be a

 processors to a single
ultiprocessor jobs on
municator partitioning

the advantages of
vice nodes run full Unix)
oes not have to be
) this is highly specific to

 is therefore not
ed from its function
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Implementation of Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
slower than running the jobs sequentially. For the asynchronous
load leveling software (e.g., load leveler, load sharing facility, or
software) or compute server job queues can provide this mecha
asynchronous direct function case, thread schedulers can be us
within an SMP architecture).

To accomplish multilevel parallelism in this context, one could us
asynchronous system call interface to submit multiple multiproces
a parallel compute server. Unfortunately, loading the queues wit
generally forbidden in the usage rules of Sandia’s MP machines
concurrent jobs will suffer a delay while it percolates through the
optimization performing evaluations in this way suffers repeated
cycle (as opposed to a single queue delay in other approaches)
specialized queues which allow multiple jobs per user and which
delays can be created and balanced with competing concerns, t
viable avenue to multilevel parallelism.

An alternative approach is to allocate a large number of compute
script which runs on a service node and manages concurrent m
partitions of the total allocation. This is in fact mimicking the com
capabilities of MPI within sophisticated scripting. While this has
simplifying the automation of pre- and post-processing (since ser
and minimizing analysis code modifications (since the analysis d
modified to a callable subroutine), it has the disadvantages that (1
the job submission software of a particular parallel machine and
particularly flexible or extensible, and (2) DAKOTA is disconnect

DAK 164

E
P

S

D

In

nd the server script are
ulations by DAKOTA

rs and where to write the
ommunication with the
rs files and the capture of
ully demonstrated for a
ulations will have the
 the evaluation numbers
duplicated analyses) in
 analyses it launches.

ssor DAKOTA
 multiprocessor function
 has disadvantages in

ions is currently under
re documentation will be

lave algorithm, the
 and system call
ssor. Layered on top of
s message passing for
ility in handling local
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Implementation of Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
evaluations. This disconnection is due to the fact that DAKOTA a
launched separately, and information normally passed to the sim
during simulation invocation (e.g., where to obtain the paramete
results) must be mimicked by the server script. DAKOTA’s only c
simulations in this case comes through the creation of paramete
completed results files. While this procedure has been successf
single multiprocessor simulation, concurrent multiprocessor sim
additional complication that the server script must correctly track
(which are not a simple increasing sequence is the presence of
order to associate the proper tagged files from DAKOTA with the

The final option for multilevel parallelism is to use the multiproce
implementation (described in the following section) and manage
evaluations internally. While elegant and general-purpose, it also
required modification to analysis codes. Each of these three opt
investigation, and it is expected that future releases of the softwa
able to recommend the most fruitful of these approaches.

Multiprocessor DAKOTA implementation

When executing DAKOTA in multiprocessor mode using theMaster-s
synchronous and asynchronous operations of the direct function
simulation interfacing classes are issues that are local to a proce
these local interfacing capabilities is the software which manage
assignment of work among processors. This design allows flexib

DAK 165

E
P

S

D

In

f the global message
er-slave approach in
sults using message
ir simulations using the
the fact that, since the

ing one job at a time to a
hronously on the server.
hich can exploit

ssing across multiple
asynchronous direct
e this additional

her the system call or
 call case is particularly
d in unmodified form and
bination of pre- and post-
e configured quickly and

h cannot be used since it
e computational context

h system calls on different
ust be used whenever
A (in this case, an MPI
processors within a slave
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Implementation of Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
evaluation mechanisms independently from the particular form o
passing model. For example, within the global context of a mast
which the master isasynchronously assigning jobs and retrieving re
passing with slave servers, the slave servers locally execute the
synchronousdirect function or system call protocols. This is due to
master-slave algorithm is managing the parallelism and schedul
server, there is nothing to be gained in performing the job async
However, if new approaches or architectures become available w
additional parallelism at the slave server level (e.g., message-pa
SMP’s with multiple asynchronous jobs on each SMP), then the
function and system call capabilities could be employed to realiz
parallelism.

In the single-level parallel case of single-processor analyses, eit
direct function interfacing approaches can be used. The system
popular on clusters of workstations since the analysis can be use
the user can employ a simple driver script to coordinate any com
processing tools associated with an analysis. Applications can b
easily in this way.

For multiprocessor analyses, the system call interfacing approac
is not possible to share an MPI communicator (which provides th
for the multiprocessor analysis) between processes spawned wit
processors. Therefore, the direct function interfacing approach m
employing multiprocessor analyses within multiprocessor DAKOT
communicator can be passed in through the procedure call for all

DAK 166

E
P

S

D

In

main ramification of
modify the analysis into
nction

restriction in the future
table loading or
eed, M.S., and
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Implementation of Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
server - seeMultilevel parallelism for additional MPI details). The
the restriction to the direct function interface is the requirement to
a callable subroutine and link it into the executable (seeThe Direct Fu
Application Interface). However,it may be feasible to remove this
through use of MPMD (“Multiple Program, Multiple Data”) execu
dynamic process creation with the emerging MPI-2 standard (se[Eldr
Hart, W.E., 1998] for additional details).

DAK 167

E
P

S

D

In

s the parallelism that is
n specifies the available
ilable parallelism (i.e.,
lly exploited in particular
 parallelism by an
m and exploit it without

chronous ,
keywords

nal means to allocate
, the
ecify the availability of
ithin a model.

ging job allocation
 automatically

hronously schedule
ve processors using
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Specifying Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Specifying Parallelism

In specifying parallelism with DAKOTA, the “model” encompasse
supported in the problem (in particular, the interface specificatio
parallelism). Then, depending on the “iterator” selected, the ava
multiple processors, asynchronous interfaces) will be automatica
ways. This design is known asimplicit parallelism, in that the use of
iterator is implicit: the methods recognize the available parallelis
need for specification of special parallelized methods.

The Model

Specifying parallelism within a model can involve the use of theasyn
evaluation_servers , andprocessors_per_evaluation
described inInterface Commands.

When using DAKOTA on a single-processor and relying on exter
jobs to processors (seeSingle-processor DAKOTA implementation)
asynchronous interface specification is all that is required to sp
asynchronous system calls or asynchronous direct invocations w

When executing DAKOTA across multiple processors and mana
internally (seeMultiprocessor DAKOTA implementation), DAKOTA
detects the presence of multiple processors and will, by default,async
jobs among slave processors while executing the jobs on the sla

DAK 168

E
P

S

D

In

ormed on multiple

w the total processor
 particular simulation

ture for SMP clusters and will be
ation in multiprocessor mode

lelism available in a
, the iterators which can

 search, Solis-Wets, and

ultidim

l exploit parallelism
(selected with
ich will perform

culate that the gradient
d later and compute the
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Specifying Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
synchronous invocations. If the function evaluations are to be perf
processors (multilevel parallelism), thenevaluation_servers or
processors_per_evaluation must be specified to define ho
allocation will be partitioned into function evaluation servers for a
interface.
Note: asynchronous execution on the slave processors may be supported in the fu
triggered by theasynchronous interface specification. However, using this specific
is not supported in the current release.

The Iterator

As mentioned previously, iterators automatically detect the paral
model and exploit it as appropriate within the iteration. Currently
exploit available parallelism are:

• SGOPT optimizers - the genetic algorithm, coordinate pattern
stratified Monte Carlo methods within SGOPT.

• Parameter studies - DAKOTA’svector , list , centered , andm
parameter studies.

• Gradient-based optimizers - NPSOL, DOT, and OPT++ can al
through the use of DAKOTA’s native finite differencing routine
method_source dakota in the responses specification) wh
concurrent evaluations whenever the model supports them.

• Speculative optimization - NPSOL, DOT, and OPT++ can spe
information associated with a given line search point will be use

DAK 169

E
P

S

D

In

in parallel at the same
ive keyword in
unt of computation to be
 multiple processors).

lelism through
 ofynchronous in

on runs an NPSOL
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Specifying Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
gradient information, either by finite difference or analytically,
time as the function values. This option is selected with thespeculat
the method specification and is used to balance the total amo
performed at each design point (allowing efficient utilization of

Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job (which exploits paral
asynchronous calls to external job schedulers) requires inclusionas
the interface specification. For example, the following specificati
optimization which will perform asynchronous finite differencing:

interface, \
 application system, \
 asynchronous \
 analysis_driver= ’qsub_script’

variables, \
 continuous_design = 5 \
 cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
 cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \
 cdv_upper_bounds 1.0 1.0 1.0 1.0 1.0 \
 cdv_descriptor ’x1’ ’x2’ ’x3’ ’x4’ ’x5’

responses, \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \
 interval_type central \
 method_source dakota \
 fd_step_size = 1.0E-4 \
 no_hessians

method, \
 npsol_sqp

DAK 170

E
P

S

D

In

A’s internal finite
e, 11 function
ve variables) can be
ese 11 evaluations will be
ssigned to additional

is detected automatically
ere is little to
SOL example using the
e interface
nchronously as described

ations managed by the

 or
 to determine the
ore advanced example, a
econfigures the
 as follows:
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Specifying Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
Note thatmethod_source dakota is needed to invoke DAKOT
differencing routine in order to exploit the parallelism. In this cas
evaluations (one at the current point plus two deltas in each of fi
performed simultaneously for each NPSOL response request. Th
launched with system calls in the background and presumably a
processors through submission to a queue or similar approach.

Multiprocessor DAKOTA specification

Since the presence of multiple processors within the MPI context
(whenever DAKOTA is launched in parallel withmpirun or yod), th
specify for the multiprocessor DAKOTA case. To run the same NP
master-slave approach,asynchronous would be removed from th
specification (since the slave servers execute their evaluations sy
in Multiprocessor DAKOTA implementation):

interface, \
 application system, \
 analysis_driver= ’qsub_script’

This will result in concurrent execution of single-processor evalu
self-scheduling master-slave algorithm.

If multilevel parallelism is being used, thenevaluation_servers
processors_per_evaluation must additionally be specified
processor partitioning to be used for a particular interface. In a m
hybrid strategy which employs multilevel parallelism and which r
processor partitioning for varying model fidelity can be specified

DAK 171

E
P

S

D

In
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Specifying Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
strategy, \
 multi_level uncoupled \
 method_list = ’VPS’, ’NLP’

variables, \
 continuous_design = 4 \
 cdv_initial_point 1.0 1.0 1.0 1.0

method, \
 vector_parameter_study \
 id_method = ’VPS’ \
 step_vector = -.1 -.1 -.1 -.1 \
 num_steps = 20 \
 interface_pointer = ’COARSE’ \
 responses_pointer = ’NO_GRAD’

interface, \
 application direct, \
 id_interface = ’COARSE’ \
 analysis_driver = ’sim1’ \
 processors_per_evaluation = 5

responses, \
 id_responses = ’NO_GRAD’ \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 no_gradients \
 no_hessians

method, \
 npsol_sqp \
 id_method = ’NLP’ \
 interface_pointer = ’FINE’ \
 responses_pointer = ’FD_GRAD’

interface, \
 application direct, \
 id_interface = ’FINE’ \
 analysis_driver = ’sim2’ \
 processors_per_evaluation = 10

DAK 172

E
P

S

D

In

n the study will
tions are scheduled
 the best parameter set to

revious examples) on a
 the multilevel parallel
rfaces (see
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Specifying Parallelism

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
responses, \
 id_responses = ’FD_GRAD’ \
 num_objective_functions = 1 \
 num_nonlinear_constraints = 2 \
 numerical_gradients \
 interval_type central \
 method_source dakota \
 fd_step_size = 1.0E-4 \
 no_hessians

If DAKOTA is executed on 40 processors (usingmpirun or yod), the
first run a parameter study using a coarse model in which evalua
through 8 servers of 5 processors each. The study will then pass
NPSOL which will perform parallel finite differencing (as in the p
fine model using 4 servers of 10 processors each. Note that, for
case, thedirect application interface must be used for both inte
Multiprocessor DAKOTA implementation).

DAK 173

E
P

S

D

In

lism through
 procedure described in

 parallelism) requires

arallel DAKOTA job,

er selecting them from a
achines in a machine file

ine, similar facilities are
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Running a parallel DAKOTA job

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version

Running a parallel DAKOTA job

Single-processor DAKOTA execution

Running a single-processor DAKOTA job (which exploits paralle
asynchronous calls to external job schedulers) is identical to the
Running DAKOTA , e.g.:

dakota -i dakota.in > dakota.out

Multiprocessor DAKOTA execution

Running a multiprocessor DAKOTA job (which internally exploits
the use of an executable loading facility such asmpirun or yod .

On clusters of workstations, thempirun script is used to initiate a p
e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in > dakota.out

where both examples specify the use of 12 processors, the form
default system resources file and the latter specifying particular m
(see[Gropp, W., and Lusk, E., 1996] for details).

On a massively parallel computer such as the TeraFLOPS mach
available from the Cougar operating system:

yod -sz 501 dakota -i dakota.in > dakota.out

DAK 174

E
P

S

D

In

s are used by MPI
rguments are used by

lematic since certain file
ved to cause
ingle-processor
 still called in this
g local linkage (all files or
be automated within a
OTA User’s Instructions (6/11/99) Exploiting Parallelism - Running a parallel DAKOTA job

xploiting
arallelism

EACAS
Library

AKOTA
Manuals

User’s
structions

Draft Version
In both thempirun andyod cases, MPI command line argument
(extracted in the call toMPI_Init) and DAKOTA command line a
DAKOTA (extracted by DAKOTA’s command line handler).

Caveats

MPI extracts its command line arguments first which can be prob
path specifications (e.g., “../some_filename ”) have been obser
problems, both for multiprocessor executions withmpirun and for s
executions of an executable configured with MPI (sinceMPI_Init is
case). These path problems can be most easily resolved by usin
softlinks to the files appear in the same directory), which will likely
run script in a future software release.

DAKOTA User’s Instructions (6/11/99) DAKOTA Commands - Main Menu 175

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

Capability
Overview

DAKOTA
Comands

Simulation
Interfacing

DAKOTA
Introduction

Draft Version

i Blue text
indicates

a link to more
information.

Exploiting
Parallelism

DAKOTA Commands

Commands Introduction

Interface Commands

Variables Commands

Responses Commands

Strategy Commands

Method Commands

DAKOTA User’s Instruct 176

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

Co
Int

DAKOTA
Commands

ds

i Blue text
indicates

a link to more
information.

Ov

IDR

Sa

Ru

Ta
ions (6/11/99) DAKOTA Commands - Commands Introduction

Responses
Commands

mmands
roduction

Variables
Commands

Interface
Commands

Method
Comman

Strategy
Commands

Draft Version

Commands Introduction

erview

 Input Specification File
Common Specification Mistakes

mple dakota.in Files
Sample 1: Optimization
Sample 2: Least Squares
Sample 3: Nondeterministic Analysis
Sample 4: Parameter Study
Sample 5: Multilevel Hybrid Strategy

nning DAKOTA
Executable Location

Remote installations
Sandia developer-supported installations

Command Line Inputs
Execution Syntax

Input/Output Management
Restart Management

bular descriptions

DAK 177

D
C

S

D

In

C
In

riables into
(rategy, method,
e user’s input file, and
ution of the DAKOTA
 a DAKOTA execution is
ods. Furthermore, each
wn set of variables, its
 multiple specifications of

k Reader (IDR) parsing
., 1996], which uses

the system. This input
uts from which a
derived.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Overview

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Overview

In the DAKOTA system, astrategy governs how eachmethod mapsva
responses through the use of aninterface. Each of these five pieces st
variables, responses, andinterface) are separate specifications in th
as a whole, determine the study to be performed during an exec
software. The number of strategies which can be invoked during
limited to one. This strategy, however, may invoke multiple meth
method may (in general) have its own “model,” consisting of its o
own set of responses, and its own interface. Thus, there may be
themethod, variables, responses, andinterface sections.

The syntax of DAKOTA specification is governed by the Input Dec
system[Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E
thedakota.input.spec file to describe the allowable inputs to
specification file provides a template of the allowable system inp
particular input file (referred to herein as adakota.in file) can be

DAK tion File 178

D
C

S

D

In

C
In

is file
tem files which are

 is the
and required capability
g than helpful and, in this
ay be a more effective
s input specification
derstood. Key features

 in {}’s, optional
ed in ()’s, optional groups
by the | symbol. These
 appear in actual

erface, and responses)
a keyword specification
to escape the newline.
n and in user input files.

e>
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

IDR Input Specification File

DAKOTA input is governed by the IDR input specification file. Th
(dakota.input.spec) is used in the generation of parsing sys
compiled into the DAKOTA executable. Therefore,dakota.input.spec
definitive source for input syntax, capability options, and optional
sub-parameters. Beginning users may find this file more confusin
case, adaptation of example input files to a particular problem m
approach. However, advanced users can master all of the variou
possibilities once the structure of the input specification file is un
include:

1. In the input specification, required parameters are enclosed
parameters are enclosed in []’s, required groups are enclos
are enclosed in []’s, and either-or relationships are denoted
symbols only appear indakota.input.spec ; they must not
user input files.

2. Keyword specifications (i.e., strategy, method, variables, int
are delimited by newline characters. Therefore, to continue
onto multiple lines, the back-slash character (“\”) is needed
These newline escapes appear both in the input specificatio

3. Each of the five keyword specifications begins with a
<KEYWORD = name>, <FUNCTION = handler_nam

DAK tion File 179

D
C

S

D

In

C
In

to the keyword handler
l input file, only the

e user must supply
,
e specification. In an
parated by commas
otes (e.g.,

nd white-space
kota.in Files
on, this is not required.

ion is unique. For
 keyword could be
ce this would be

\
\

\
\

\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
header which names the keyword and provides the binding
within DAKOTA’s problem description database. In an actua
name of the keyword appears (e.g.,variables).

4. Some of the specifications within a keyword indicate that th
<INTEGER>, <REAL>, <STRING> or <LISTof><INTEGER>
<LISTof><REAL> , <LISTof><STRING> data as part of th
actual input file, the “=” is optional,<LISTof> data can be se
or whitespace, and<STRING> data are enclosed in single qu
‘text_book’).

5. Input is order-independent (except for entries in data lists) a
insensitive. Although the order of input shown in theSample da
generally follows the order of options in the input specificati

6. Specifications may be abbreviated so long as the abbreviat
example, theapplication specification within the interface
abbreviated asapplic , but should not be abbreviated asapp sin
ambiguous withapproximation .

7. Comments are preceded by #.

Thedakota.input.spec file used in DAKOTA V1.1 is:

<KEYWORD = variables>, <FUNCTION = variables_kwhandler>
[id_variables = <STRING>]
[{continuous_design = <INTEGER>}

[cdv_initial_point = <LISTof><REAL>]
[cdv_lower_bounds = <LISTof><REAL>]
[cdv_upper_bounds = <LISTof><REAL>]
[cdv_descriptor = <LISTof><STRING>]]

DAK tion File 180

D
C

S

D

In

C
In

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
[{discrete_design = <INTEGER>}

[ddv_initial_point = <LISTof><INTEGER>]
[ddv_lower_bounds = <LISTof><INTEGER>]
[ddv_upper_bounds = <LISTof><INTEGER>]
[ddv_descriptor = <LISTof><STRING>]]

[{uncertain = <INTEGER>}
[uv_descriptor = <LISTof><STRING>]
{uv_distribution_type = <LISTof><STRING>}
[uv_means = <LISTof><REAL>]
[uv_std_deviations = <LISTof><REAL>]
[uv_lower_bounds = <LISTof><REAL>]
[uv_upper_bounds = <LISTof><REAL>]
[uv_filenames = <LISTof><STRING>]]

[{continuous_state = <INTEGER>}
{csv_initial_state = <LISTof><REAL>}
[csv_descriptor = <LISTof><STRING>]]

[{discrete_state = <INTEGER>}
{dsv_initial_state = <LISTof><INTEGER>}
[dsv_descriptor = <LISTof><STRING>]]

<KEYWORD = responses>, <FUNCTION = responses_kwhandler>
[id_responses = <STRING>]
[{active_set_vector} {on} | {off}] \
({num_objective_functions = <INTEGER>}
 [num_nonlinear_constraints = <INTEGER>])
|
{num_least_squares_terms = <INTEGER>}
|
{num_response_functions = <INTEGER>}
{no_gradients}
|
({numerical_gradients}

[{method_source} {dakota} | {vendor}]
[{interval_type} {forward} | {central}] \
[fd_step_size = <REAL>])

|
{analytic_gradients}
|
({mixed_gradients}

{id_numerical = <LISTof><INTEGER>}
 [{method_source} {dakota} | {vendor}] \
 [{interval_type} {forward} | {central}] \
 [fd_step_size = <REAL>]
{id_analytic = <LISTof><INTEGER>})

{no_hessians}
|
{analytic_hessians}

DAK tion File 181

D
C

S

D

In

C
In

\
\

\
\

\
\

\
\

\
\
\

\
\

\
\

\
\

\
\
\

\

\
\

\

\

\
\

\
\

\
\
\

\
\

\
\

\
\

\
\

\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
<KEYWORD = interface>, <FUNCTION = interface_kwhandler>

[id_interface = <STRING>]
({application}

({analysis_driver = <STRING>}
 [input_filter = <STRING>]
 [output_filter = <STRING>])
|
({concurrent_drivers = <LISTof><STRING>}
 [pre_driver = <STRING>]
 [post_driver = <STRING>])
({system} [asynchronous]
 [parameters_file = <STRING>]
 [results_file = <STRING>]
 [analysis_usage = <STRING>]
 [aprepro]
 [file_tag]
 [file_save])
|
({direct} [asynchronous]
 [evaluation_servers = <INTEGER>]
 [processors_per_evaluation = <INTEGER>])
[{failure_capture} {abort} | {retry = <INTEGER>} | \
 {recover = <LISTof><REAL>} | {continuation}]) \

|
({approximation}

{neural_network} | {response_surface} |
 {multi_point} | {mars_surface}) \

|
{test = <STRING>}

<KEYWORD = strategy>, <FUNCTION = strategy_kwhandler>
({multi_level}
 ({uncoupled}

[{adaptive} {progress_threshold = <REAL>}]
{method_list = <LISTof><STRING>})

 |
 ({coupled}

{global_method = <STRING>}
{local_method = <STRING>}
[local_search_probability = <REAL>]))

|
({seq_approximate_opt}

{opt_method = <STRING>}
{approximate_interface = <STRING>}
{actual_interface = <STRING>})

|
({opt_under_uncertainty}

{opt_method = <STRING>}

DAK tion File 182

D
C

S

D

In

C
In

\
\

\
\

\
\

\

\
\

\
\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\
\

\
\

\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
{nond_method = <STRING>})

|
({branch_and_bound}

{opt_method = <STRING>}
{iterator_servers = <INTEGER>})

|
({single_method}

[method_pointer = <STRING>])

<KEYWORD = method>, <FUNCTION = method_kwhandler>
[id_method = <STRING>]
[interface_pointer = <STRING>]
[variables_pointer= <STRING>]
[responses_pointer = <STRING>]
[speculative]
[{output} {verbose} | {quiet}]
[linear_constraints = <LISTof><REAL>]
[max_iterations = <INTEGER>]
[max_function_evaluations = <INTEGER>]
[constraint_tolerance = <REAL>]
[convergence_tolerance = <REAL>]
({dot_frcg}

[{optimization_type} {minimize} | {maximize}]) \
|
({dot_mmfd}

[{optimization_type} {minimize} | {maximize}]) \
|
({dot_bfgs}

[{optimization_type} {minimize} | {maximize}]) \
|
({dot_slp}

[{optimization_type} {minimize} | {maximize}]) \
|
({dot_sqp}

[{optimization_type} {minimize} | {maximize}]) \
|
({npsol_sqp}

[verify_level = <INTEGER>]
[function_precision = <REAL>]
[linesearch_tolerance = <REAL>])

|
({optpp_cg}

[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_q_newton}

[{search_method} {value_based_line_search} |
 {gradient_based_line_search} | {trust_region}] \

DAK tion File 183

D
C

S

D

In

C
In

\
\

\
\

\

\
\

\
\

\

\
\

\
\

\

\
\

\
\

\
\

\
\

\
\

\

\
\

\
\

\

\
\

\
\

\

\
\

\
\

\
\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_g_newton}

[{search_method} {value_based_line_search} |
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_newton}

[{search_method} {value_based_line_search} |
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_fd_newton}

[{search_method} {value_based_line_search} |
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_baq_newton}

[gradient_tolerance = <REAL>])
|
({optpp_ba_newton}

[gradient_tolerance = <REAL>])
|
({optpp_bcq_newton}

[{search_method} {value_based_line_search} |
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_bcg_newton}

[{search_method} {value_based_line_search} |
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_bc_newton}

[{search_method} {value_based_line_search} |
 {gradient_based_line_search} | {trust_region}] \
[max_step = <REAL>]
[gradient_tolerance = <REAL>])

|
({optpp_bc_ellipsoid}

[initial_radius = <REAL>]
[gradient_tolerance = <REAL>])

DAK tion File 184

D
C

S

D

In

C
In

\
\

\
\
\
\

\
\

\
\

\
\

\
\
\
\

\
\

\
\

\
\

\
\
\

\
\

\
\
\
\

\

\
\

\
\

\
\

\
\

\
\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
|
({optpp_pds}

[search_scheme_size = <INTEGER>])
|
{optpp_test_new}
|
({sgopt_pga_real}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[population_size = <INTEGER>]
[{selection_pressure} {rank = <REAL>} |
 {proportional}]
[{replacement_type} {random = <INTEGER>} |
 {CHC = <INTEGER>} | {elitist = <INTEGER>}
 [new_solutions_generated = <INTEGER>]]
[{crossover_type} {two_point} | {mid_point} | \
 {blend} | {uniform}
 [crossover_rate = <REAL>]]
[{mutation_type} ({normal} [std_deviation = <REAL>]) \
 | {interval} | {cauchy} \
 [dimension_rate = <REAL>]
 [population_rate = <REAL>]])

|
({sgopt_pga_int}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[population_size = <INTEGER>]
[{selection_pressure} {rank = <REAL>} |
 {proportional}]
[{replacement_type} {random = <INTEGER>} |
 {CHC = <INTEGER>} | {elitist = <INTEGER>}
 [new_solutions_generated = <INTEGER>]]
[{crossover_type} {two_point} | {uniform} \
 [crossover_rate = <REAL>]]
[{mutation_type} {offset} | {interval} \
 [dimension_rate = <REAL>]
 [population_rate = <REAL>]])

|
({sgopt_coord_ps}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[{expansion_policy} {unlimited} | {once}] \
[expand_after_success = <INTEGER>]
[expansion_exponent = <INTEGER>]
[contraction_exponent = <INTEGER>]
{initial_delta = <REAL>}

DAK tion File 185

D
C

S

D

In

C
In

\

\
\

\
\
\

\
\

\
\

\

\
\
\

\
\

\
\

\
\

\
\

\
\
\

\
\

\
\

\
\
\

\
\

\
\

\
\

\
\

\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
{threshold_delta = <REAL>}
[{exploratory_moves} {standard} | {offset} | \
 {best_first} | {biased_best_first}]) \

|
({sgopt_coord_sps}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[{expansion_policy} {unlimited} | {once}] \
[expand_after_success = <INTEGER>]
[expansion_exponent = <INTEGER>]
[contraction_exponent = <INTEGER>]
{initial_delta = <REAL>}
{threshold_delta = <REAL>}
[{exploratory_moves} {standard} | {offset} | \
 {best_first} | {biased_best_first}]) \

|
({sgopt_solis_wets}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[expand_after_success = <INTEGER>]
[contract_after_failure = <INTEGER>]
[initial_rho = <REAL>]
[threshold_rho = <REAL>])

|
({sgopt_strat_mc}

[solution_accuracy = <REAL>]
[max_cpu_time = <REAL>]
[seed = <INTEGER>]
[partitions = <LISTof><INTEGER>])

|
({nond_probability}

{observations = <INTEGER>}
[seed = <INTEGER>]
{sample_type} {random} | {lhs}
{response_thresholds = <LISTof><REAL>})

|
({nond_mean_value}

{response_filenames = <LISTof><STRING>})
|
({vector_parameter_study}

({final_point = <LISTof><REAL>}
 {step_length = <REAL>} | {num_steps = <INTEGER>})
|
({step_vector = <LISTof><REAL>}
 {num_steps = <INTEGER>}))

|

DAK tion File 186

D
C

S

D

In

C
In

\
\

\
\

\
\

\
\

nal group specifications
te, and discrete state

appear as a group. Within
cification of the function

ion set OR a generic
 of the gradients (either
llowed by the required
pecified). Next, the
R an approximation OR
ecified with either the
specification is relatively
 optimization OR an
gle method strategy
ncoupled OR a coupled
d is the most involved
ture is simply that of a
 long list of possible

 a variety of method-
s, Responses
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
({list_parameter_study}

{list_of_points = <LISTof><REAL>})
|
({centered_parameter_study}

{percent_delta = <REAL>}
{deltas_per_variable = <INTEGER>})

|
({multidim_parameter_study}

{partitions = <LISTof><INTEGER>})

In the variables keyword, the main structure is that of the five optio
for continuous design, discrete design, uncertain, continuous sta
variables. Each of these specifications can either appear or not
the responses keyword, the primary structure is the required spe
set (either an optimization function set OR a least squares funct
function set must appear), followed by the required specification
none OR numerical OR analytic OR mixed must be specified) fo
specification of the Hessians (either none OR analytic must be s
interface keyword requires the selection of either an application O
a test interface. Within the application block, the type must be sp
system OR the direct required group specification. The strategy
simple, requiring either a multilevel OR a sequential approximate
optimization under uncertainty OR a branch and bound OR a sin
specification. Within the multilevel group specification, either an u
group specification must be supplied. Lastly, the method keywor
specification; however, its structure is relatively simple. The struc
sequence of optional method-independent settings followed by a
methods appearing as required group specifications (containing
dependent settings) separated by OR’s. Refer toVariables Command

DAK tion File 187

D
C

S

D

In

C
In

od Commands for
nd required
ic and rules, refer to
6]

mon errors. Less obvious

ability in executables.
explain, reference to the
 will often resolve the

care must be taken to
e since the newline
errors due to the

dding comments within a
l the end of a keyword
ample, the following

ent neglects to escape
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
Commands, Interface Commands, Strategy Commands, andMeth
detailed information on the keywords and their various optional a
specifications. And for additional details on IDR specification log
[Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 199.

Common Specification Mistakes

Spelling and omission of required parameters are the most com
errors include:

1. Documentation of new capability can lag the use of new cap
When parsing errors occur which the documentation cannot
particular input specification used in building the executable
errors.

2. Since keywords are terminated with the newline character,
avoid following the backslash character with any white spac
character will not be properly escaped, resulting in parsing
truncation of the keyword specification.

3. Care must be taken to include newline escapes when embe
keyword specification. That is, newline characters will signa
specification even if they are part of a comment line. For ex
specification will be truncated because the embedded comm
the newline:

No error here: newline need not be escaped since comment is not embedded
responses, \

DAK tion File 188

D
C

S

D

In

C
In

which will help the user
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - IDR Input Specifica

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
 num_objective_functions = 1 \
Error here: this comment must escape the newline
 analytic_gradients \
 no_hessians

In most cases, the IDR system provides helpful error messages
isolate the source of the parsing problem.

DAK n Files 189

D
C

S

D

In

C
In

.input.spec
 DAKOTA system.

n of theTextbook
s available in the test
es are included in
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Sample dakota.in Files

A DAKOTA input file is a collection of the fields allowed in thedakota
specification file which describe the problem to be solved by the
Several examples follow.

Sample 1: Optimization

The following sample input file shows single-method optimizatio
Example using DOT’s modified method of feasible directions. It i
directory asDakota/test/dakota_textbook.in . Helpful not
this sample input file as comments.

DAKOTA INPUT FILE - dakota_textbook.in
NOTES: Specifications are delimited by newline characters. Therefore, to
continue a specification onto multiple lines, the back-slash character
is needed to escape the newline. Input is order-independent and
white-space insensitive. Keywords may be abbreviated so long as the
abbreviation is unique. Comments are preceded by #. Helpful NOTES
precede each section specification; however, the definitive resources
for input grammar are Dakota/src/dakota.input.spec and the Commands
chapter of the User’s Instructions manual.

Interface section specification
NOTES: Interfaces are 1 of 3 main types: application interfaces are used for
interfacing with simulation codes, approximation interfaces use
inexpensive design space approximations in place of expensive
simulations, and test interfaces use linked-in test functions for
algorithm testing purposes (to eliminate system call overhead).
Application interfaces can be further categorized into system and
direct types. The system type uses system calls to invoke the
simulation, while the direct type uses the same constructs as the test
interface for linked-in simulation codes. Both application interface
types use analysis_driver, input_filter, and output_filter
specifications. The system type additionally uses parameters_file,
results_file, analysis_usage, aprepro, file_tag, and file_save

DAK n Files 190

D
C

S

D

In

C
In

\
\

\
\

\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
specifications. The analysis_driver provides the name of the analysis
executable, driver script, or linked module; the input_filter and
output_filter provide pre- and post-processing for the analysis in the
procedure of mapping parameters into responses (default = NO_FILTER);
the parameters_file and results_file are data files which Dakota
creates and reads, respectively, in the system call case (default =
Unix temp files); analysis_usage defines nontrivial command syntax
(default = standard syntax); aprepro controls the format of the
parameters file for usage with the APREPRO utility; file_tag controls
the unique tagging of data files with function evaluation number
(default = no tagging); and file_save controls whether or not file
cleanup operations are performed (default = data files are removed
when no longer in use). Most settings are optional with meaningful
defaults as shown above. Refer to the Interface Commands section in
the User’s Instructions manual for additional information.
interface,

application system,
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver = ‘text_book’ \
 parameters_file = ‘text_book.in’ \
 results_file = ‘text_book.out’ \
 analysis_usage = ‘DEFAULT’
 file_tag
 file_save

Variables specification
NOTES: A variables set can contain design, uncertain, and state variables
for continuous, discrete, or mixed variable problem domains.
Design variables are those variables which an optimizer adjusts in
order to locate an optimal design. Each of the design parameters
can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are those variables which are
characterized by probability distributions. Each uncertain variable
specification can contain a distribution type, a mean, a standard
deviation, a lower bound, an upper bound, a histogram filename and a
descriptive tag. State variables are “other” variables which are to
be mapped through the interface. Each state variable specification
can have an initial state and a descriptor. State variables provide a
convenience mechanism for parameterizing additional model inputs, such
as mesh density, solver convergence tolerance and time step controls,
and will be used to enact model adaptivity in future strategy
developments.

variables,
continuous_design = 2
 cdv_initial_point 0.9 1.1 \
 cdv_upper_bounds 5.8 2.9

DAK n Files 191

D
C

S

D

In

C
In

\

\
\
\

\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
 cdv_lower_bounds 0.5 -2.9
 cdv_descriptor ‘x1’ ‘x2’

Responses specification
NOTES: This specification implements a generalized Dakota data set by
specifying a set of functions and the types of gradients and Hessians
for these functions. Optimization data sets require specification of
num_objective_functions and num_nonlinear_constraints. Multiobjective
opimization is not yet supported, so num_objective_functions must
currently be equal to 1. Uncertainty quantification data sets are
specified by num_response_functions. Nonlinear least squares data
sets are specified with num_least_squares_terms. Gradient type
specification may be no_gradients, analytic_gradients,
numerical_gradients or mixed_gradients. Numerical and mixed gradient
specifications can optionally include selections for method_source,
interval_type, and fd_step_size. Mixed_gradient specifications require
id_numerical & id_analytic lists to specify the gradient types for
different function numbers. Hessian type specification may currently
be no_hessians or analytic_hessians.

responses,
num_objective_functions = 1
num_nonlinear_constraints = 2
analytic_gradients
no_hessians

Strategy specification
NOTES: Contains specifications for multilevel, SAO, and OUU strategies. The
single_method strategy is a “fall through” strategy, in that in only
invokes a single iterator. If no strategy specification appears, then
single_method is the default.

strategy,
single_method

Method specification
NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,
dot_sqp, npsol_sqp, optpp_cg, optpp_q_newton, optpp_g_newton,
optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,
optpp_bc_newton, optpp_bcq_newton, optpp_bcg_newton,
optpp_bc_ellipsoid, optpp_pds, optpp_test_new, sgopt_pga_real,
sgopt_pga_int, sgopt_coord_ps, sgopt_coord_sps, sgopt_solis_wets,
sgopt_strat_mc, nond_probability, nond_mean_value,
vector_parameter_study, list_parameter_study,
centered_parameter_study, or multidim_parameter_study. Most method
control parameters are optional with meaningful defaults. Default
values for optional parameters are defined in the DataMethod class
constructor and are documented in the Method Commands section of the

DAK n Files 192

D
C

S

D

In

C
In

\
\

\
\

\

solution of the
 available in the test

\
\

\
\

\
\
\

\
\
\

\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
User’s Instructions manual.

method,
 dot_mmfd,

 max_iterations = 50,
 convergence_tolerance = 1e-4
 output verbose
 optimization_type minimize

Sample 2: Least Squares

The following sample input file shows a nonlinear least squares
Rosenbrock Example using OPT++’s Gauss-Newton method. It is
directory asDakota/test/dakota_rosenbrock.in .

interface,
application system,
 analysis_driver = ‘rosenbrock_ls’

variables,
continuous_design = 2
 cdv_initial_point -1.2 1.0
 cdv_lower_bounds -2.0 -2.0
 cdv_upper_bounds 2.0 2.0
 cdv_descriptor ‘x1’ ‘x2’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

method,
optpp_bcg_newton,
max_iterations = 50,
convergence_tolerance = 1e-4

DAK n Files 193

D
C

S

D

In

C
In

arlo sampling using the
/

\
\

\
\

\
\

\
\

\

\

\
\

\

\

udy using theTextbook
study.in .

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Sample 3: Nondeterministic Analysis

The following sample input file shows Latin Hypercube Monte C
Textbook Example. It is available in the test directory asDakota/test
dakota_textbook_lhs.in .

interface,
application system,
 analysis_driver= ‘text_book’

variables,
uncertain = 2
 uv_distribution_type = ‘normal’ ‘normal’ \
 uv_means = 248.89, 593.33 \
 uv_std_deviations = 12.4, 29.7 \
 uv_lower_bounds = 199.3, 474.63
 uv_upper_bounds = 298.5, 712.
 uv_descriptor = ‘TF1’ ‘TF2’

responses,
num_response_functions = 3
no_gradients
no_hessians

strategy,
single_method

method,
 nond_probability,
 observations = 20,
 response_thresholds = 1.2e+11 6.e+04 3.5e+05\

 seed = 1
 sample_type lhs

Sample 4: Parameter Study

The following sample input file shows a 1-D vector parameter st
Example. It is available in the test directory asDakota/test/dakota_p

interface,

DAK n Files 194

D
C

S

D

In

C
In

\
\

\
\

\
\
\

\

\
\
\

using three iterators. It
Newton gradient-based
able in the test

\
\

\
\

\
\

\
\
\

\
\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
application system,
 asynchronous
 analysis_driver = ‘text_book’

variables,
continuous_design = 3
 cdv_initial_point 1.0 1.0 1.0

responses,
num_objective_functions = 1
num_nonlinear_constraints = 2
analytic_gradients
analytic_hessians

method,
 vector_parameter_study

 step_vector = .1 .1 .1
 num_steps = 4

Sample 5: Multilevel Hybrid Strategy

The following sample input file shows a multilevel hybrid strategy
employs a genetic algorithm, coordinate pattern search and full
optimization in succession to solve theTextbook Example. It is avail
directory asDakota/test/dakota_multilevel.in .

strategy,
multi_level uncoupled
 method_list = ‘GA’ ‘CPS’ ‘NLP’

method,
sgopt_pga_real
 id_method = ‘GA’
 variables_pointer = ‘V1’
 interface_pointer = ‘I1’
 responses_pointer = ‘R1’
 population_size = 10
 verbose output

method,
sgopt_coord_sps

DAK n Files 195

D
C

S

D

In

C
In

\
\

\
\

\
\
\
\

\
\

\
\

\
\

\

\
\
\

\
\

\

\
\

\
\

\
\

\
\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Sample dakota.i

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
 id_method = ‘CPS’
 variables_pointer = ‘V1’
 interface_pointer = ‘I1’
 responses_pointer = ‘R1’
 verbose output
 initial_delta = 0.1
 threshold_delta = 1.e-4
 solution_accuracy = 1.e-10
 exploratory_moves best_first

method,
 optpp_newton

 id_method = ‘NLP’
 variables_pointer = ‘V1’
 interface_pointer = ‘I1’
 responses_pointer = ‘R2’
 gradient_tolerance = 1.e-12
 convergence_tolerance = 1.e-15

interface,
id_interface = ‘I1’
application direct,
 analysis_driver= ‘text_book’

variables,
id_variables = ‘V1’
continuous_design = 2
 cdv_initial_point 0.6 0.7\
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘x1’ ‘x2’

responses,
id_responses = ‘R1’
num_objective_functions = 1
no_gradients
no_hessians

responses,
id_responses = ‘R2’
num_objective_functions = 1
analytic_gradients
analytic_hessians

DAK TA 196

D
C

S

D

In

C
In

e and location of the

tion (seeDistributions
ill reside in
 canonical name
ecutable was built (e.g.,
t directory is a

 executable.

OTA developers and
. For file systems

metimes used to
, dakota_sgi ,

as is generally the case
rs is used.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Running DAKO

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Running DAKOTA

Basic information required for running DAKOTA includes the nam
executable program and the command line syntax and options.

Executable Location

Remote installations

After installing and building the system from a new code distribu
and Checkouts andBasic Installation), the DAKOTA executable w
Dakota/src/<canonical_build_dir>/dakota , where the
describes the platform and operating system under which the ex
sparc-sun-solaris2.5.1). Thedakota file in theDakota/tes
soft link to theDakota/src/<canonical_build_dir>/dakota

Sandia developer-supported installations

The DAKOTA executable will have already been built by the DAK
installed in/usr/local/bin on the supported server machines
shared by multiple platforms, simplified canonical names are so
distinguish between the executables (e.g.,dakota_sun , dakota_hp
dakota_ibm , etc.). For file systems unique to a single platform (
with /usr/local/bin), dakota without any canonical modifie

DAK TA 197

D
C

S

D

In

C
In

ble nameddakota is

arious optional and

 required. The
r class allows
commonly used in

ption provides the
ples). The “-

provide the names of
start ”
d from the restart
ch some evaluations were
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Running DAKO

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
For the following discussions, it will be assumed that an executa
available in the user’s path.

Command Line Inputs

Executing the program with the following syntax:
dakota

will result in the following usage message which describes the v
required command line inputs:

usage: dakota [options and <args>]

-help (Print this summary)
-input <$val> (REQUIRED Dakota Problem Description file $val)
-read_restart <$val> (Read a previously written Dakota restart log file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart [$val] (Write a new Dakota restart log file $val)

Of these available command line inputs, only the “-input ” option is
command line input parser implemented in theCommandLineHandle
abbreviation so long as the abbreviation is unique. For example “-i ” is
place of “-input .”

The “-help ” option prints the usage message above. The “-input ” o
name of the DAKOTA input file (seeSample dakota.in Files for exam
read_restart ” and “-write_restart ” command line inputs
restart databases to read from and write to, respectively. The “-stop_re
command line input limits the number of function evaluations rea
database (the default is all the evaluations) for those cases in whi
erroneous or corrupted.

DAK TA 198

D
C

S

D

In

C
In

an be used:

to a file, any of a variety
cts stdout:

f “>”. To redirect stderr
. “>&” or “>>&” is used.
allow overwriting of an
“!” is appended with no

sand to the command with

on on redirection

 command line
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Running DAKO

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Execution Syntax

Input/Output Management

To run DAKOTA with a particular input file, the following syntax c
dakota -i dakota.in

This will echo stdout and stderr to the terminal. To redirect output
of redirection variants can be used. The simplest of these redire

dakota -i dakota.in > dakota.out

To append to a file rather than overwrite it, “>>” is used in place o
as well as stdout, a “&” is appended with no embedded space, i.e
To override the noclobber environment variable (if set) in order to
existing output file or appending of a file that does not yet exist, a
embedded space, i.e. “>!”, “>&!”, “>>!”, or “>>&!” is used.

To run the dakota process in the background, append an amper
an embedded space, e.g.:

dakota -i dakota.in > dakota.out &

Refer to[Anderson, G., and Anderson, P., 1986] for more informati
and background commands.

Restart Management

To write a restart file using a particular name, the-write_restart
input is used:

dakota -i dakota.in -write_restart my_restart_file

DAK TA 199

D
C

S

D

In

C
In

 write a restart file

nd line input is

ot read restart
).

ntify the same file
ad_restart
to the existing restart
s identify different
t are first
n appended to the-
ed together indefinitely
t in the latest restart file.

l is used. Note that
ead from the database,

 if any duplicates were
n the case of a-
 new restart file using-
orrupted function
ta.rst :
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Running DAKO

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
If no -write_restart specification is used, then DAKOTA will
using the default namedakota.rst .

To restart DAKOTA from a restart file, the-read_restart comma
used:

dakota -i dakota.in -read_restart my_restart_file

If no -read_restart specification is used, then DAKOTA will n
information from any file (i.e., the default is no restart processing

If the -write_restart and-read_restart specifications ide
(including the case where-write_restart is not specified and-re
identifiesdakota.rst), then new evaluations will be appended
file. If the -write_restart and-read_restart specification
files, then the evaluations read from the file identified by-read_restar
written to the-write_restart file. Any new evaluations are the
write_restart file. In this way, restart operations can be chain
with the assurance that all of the relevant evaluations are presen

To read in only a portion of a restart file, the-stop_restart contro
the integer value specified refers to the number of entries to be r
which may differ from the evaluation number in the previous run
detected (since duplicates are not replicated in the restart file). I
stop_restart specification, it is usually desirable to specify a
write_restart so as to remove the records of erroneous or c
evaluations. For example, to read in the first 50 evaluations fromdako

dakota -i dakota.in -read_restart dakota.rst
-stop_restart 50 -write_restart dakota_new.rst

DAK TA 200

D
C

S

D

In

C
In

ions from

lowing the 50th in

bilities. Processing a
n performed. Then, when
ed by the iterator are
the primary advantage of
to correctly detect
es without the need for
umerical round-off error
 previous and restarted
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Running DAKO

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version
Thedakota_new.rst file will contain the 50 processed evaluat

dakota.rst as well as any new evaluations. All evaluations fol
dakota.rst have been removed from the latest restart record.

DAKOTA’s restart algorithm relies on its duplicate detection capa
restart file populates the list of function evaluations that have bee
the study is reinitiated, many of the function evaluations request
intercepted by the duplicate detection code. This approach has
restoring the complete state of the iteration (including the ability
subsequent duplicates) for all iterators and multi-iterator strategi
iterator-specific restart code. However, the possibility exists for n
to cause a divergence between the evaluations performed in the
studies. This has been extremely rare to date.

DAK tions 201

D
C

S

D

In

C
In

rmats (Table 9 through
tion, the actual syntax of
on as it would appear
 required group, or

x relationships that can
For example, in an
onal specification
ther required group
direct is
) separated from
ical OR’s. Thus,

re the complete picture of
.spec .

ts the various group
d groups are presented in
ersustest in
most required groups are
 11 and Table 12).
s to denote omissions

table entries.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Commands Introduction - Tabular descrip

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ommands
troduction

Draft Version

Tabular descriptions

In the following discussions of keyword specifications, tabular fo
Table 56) are used to present a short description of the specifica
the specification fromdakota.input.spec , a sample specificati
in an input file, the status of the specification (required, optional,
optional group), and the default for an optional specification.

It can be difficult to capture in a simple tabular format the comple
occur when specifications are nested within multiple groupings.
interface keyword, theparameters_file specification is an opti
within a required group specification (system) separated from ano
specification (direct) by a logical OR. The selection ofsystem or
contained within another required group specification (application
other required group specifications (approximation , test) by log
concisely describing a specification status in a table fails to captu
the specification inter-relationships which are present indakota.input

To better capture these relationships, this documentation presen
specifications in separate tables. Details of the outermost require
one or more tables (e.g.,application versusapproximation v
Table 10, Table 13, and Table 14), and details of each of the inner
presented in additional tables (e.g.,system versusdirect in Table
Ellipsis (...) are used within tabular entries for group specification
from the group specification which are explained in subsequent

DAKOTA User’s Instruct 202

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DAKOTA
Commands

Co
Int ds

i Blue text
indicates

a link to more
information.

De

Sp

Se

Ap

Ap

Te
ions (6/11/99) DAKOTA Commands - Interface Commands

Responses
Commands

Interface
Commands

Variables
Commands

mmands
roduction

Method
Comman

Strategy
Commands

Draft Version

Interface Commands

scription

ecification

t Identifier

plication Interface

proximation Interface

st Interface

DAK 203

D
C

S

D

In

C

on evaluations will be
ing function evaluations
function. In the former
 the simulation with
e, communication
nd response files, and in
tion parameter list. More
ded inThe Application
rface can be
e within DAKOTA’s
terface). Lastly, a
est functions which are
ion capability (seeThe
es a means for
d without the expense of

 interface specification
is executable and the
, that no special analysis
es files will be tagged and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Description

The interface section in a DAKOTA input file specifies how functi
performed. The three mechanisms currently in place for perform
involve interfacing with a simulation, an approximation, or a test
case of a simulation, theapplication interface is used to invoke
either system calls or direct function calls. In the system call cas
between DAKOTA and the simulation occurs through parameter a
the direct function case, communication occurs through the func
information and examples on interfacing with simulations is provi
Interface. In the case of an approximation, anapproximation inte
selected to make use of surrogate modeling capabilities availabl
ApproximationInterface class hierarchy (seeThe Approximation In
test interface can be selected for direct access to polynomial t
compiled into the DAKOTA executable as part of the direct funct
Direct Function Application Interface). Thetest interface provid
testing algorithms and strategies without system call overhead an
engineering simulations.

Several examples follow. The first example shows an application
which specifies the use of system calls, the names of the analys
parameters and results files, that separate filters will not be used
usage syntax will be specified, and that parameters and respons

DAK 204

D
C

S

D

In

C

the use of these

\
\

\

n which invokes the

\
\

ecifies use of the

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version
saved. Refer toThe Application Interface for more information on
options.

interface,
application system,
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver = ‘rosenbrock’ \
 parameters_file = ‘params.in’ \
 results_file = ‘results.out’ \
 analysis_usage = ‘DEFAULT’ \
 file_tag
 file_save

The next example shows an approximation interface specificatio
response surface approximation methodology.

interface,
approximation,
 response_surface

The next example shows an test interface specification which sp
text_book internal test function.

interface,
test = ‘text_book’

DAK 205

D
C

S

D

In

C

\
\

 brackets that the set
 groups (enclosing in
ee interface specifications

ifier string for labeling a
 use of a particular
ification (see
cification is used to
e mapping of parameters
terface specifications in

t of theDakotaInterface class
 functionality. This allows
 since the use of themap
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Specification

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Specification

The interface specification has the following structure:
interface,

<set identifier>
<application specification>

or <approximation specification>
or <test specification>

Referring to theIDR Input Specification File, it is evident from the
identifier is an optional specification, and from the three required
parentheses) separated by OR’s, that one and only one of the thr
(application , approximation , or test) must be provided.

The optional set identifier can be used to provide a unique ident
particular interface specification. A method can then identify the
interface by specifying this label in itsinterface_pointer spec
Method Commands). The application, approximation, or test spe
define the specifics of the interface to be used by a method for th
into responses. The following sections describe each of these in
additional detail.
Developer’s notes:In the C++ implementation, the different interface classes are par
hierarchy which uses the virtualmap function to polymorphically define the interface’s
the specific identity and complexities of the interface to be hidden from the method
functionality is common among all interfaces.

DAK 206

D
C

S

D

In

C

 to input a
h a particular method
xample, a method
se an interface

pecification and a
cation if only one

ing of a method to an
hod omits specifying an
tion parsed, which has
cification exists. Table 9
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Set Identifier

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Set Identifier

The optional set identifier specification uses the keywordid_interface
string for use in identifying a particular interface specification wit
(see alsointerface_pointer in theMethod Commands). For e
whose specification containsinterface_pointer = ‘I1’ will u
specification withid_interface = ‘I1’ .

It is appropriate to omit anid_interface string in the interface s
correspondinginterface_pointer string in the method specifi
interface specification is included in the input file, since the bind
interface is unambiguous in this case. More specifically, if a met
interface_pointer , then it will use the last interface specifica
the least potential for confusion when only a single interface spe
summarizes the set identifier inputs.

Table 9 Specification detail for set identifier

Description Specification Sample Status Default

Interface set
identifier

[id_interface =
<STRING>]

id_interface=
‘I1’

Optional use of last
interface
parsed

DAK ace 207

D
C

S

D

In

C

lly filter programs, to
lter programs are invoked
e, files are used for
 the simulator program.
odification to simulator
r list is used to pass data.
t they can be linked into
n of system call
 be passed directly rather
rallelism through MPI
lism.

ecifications which are
ions pertaining
 10 summarizes the
Table 12 summarize the
erfaces. In Table 10, the
bles are supplied as
driver
n interfaces use these

ired, and the
l with the default
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Application Interf

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Application Interface

The application interface uses a simulator program, and optiona
perform the parameter to response mapping. The simulator and fi
with either system calls or direct function calls. In the former cas
transfer of parameter and response data between DAKOTA and
This approach is simple and reliable and does not require any m
programs. In the latter direct function case, the function paramete
This approach requires modification to simulator programs so tha
DAKOTA; however it can be more efficient through the eliminatio
overhead, can be less prone to loss of precision in that data can
than written to and read from a file, and can enable multilevel pa
communicator partitioning as described inImplementation of Paralle

The application interface group specification contains several sp
valid for all application interfaces as well as additional specificat
specifically to system call and direct application interfaces. Table
specifications valid for all application interfaces, and Table 11 and
additional specifications for system call and direct application int
names of the input filter, output filter, and analysis driver executa
strings using theinput_filter , output_filter , andanalysis_
specifications. Both the system call and direct function applicatio
same specifications. Theanalysis_driver specification is requ
input_filter andoutput_filter specifications are optiona

DAK ace 208

D
C

S

D

In

C

ers are used, then
 called a “3-piece

 by the
ting captured failures,
d

r , and
 level of parallelism
g Extensions).

 likely be merged with

OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Application Interf

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version
behavior of no filter usage (string default is‘NO_FILTER’). If no filt
the interface is called a “1-piece Interface”; if filters are used, it is
Interface.” Failure capturing in application interfaces is governed
failure_capture specification. Supported directives for mitiga
as described inFailure capturing, areabort , retry , recover , an
continuation .

Note that the recent additions ofconcurrent_drivers , pre_drive
post_driver to dakota.input.spec is a placeholder for the
involving concurrent analyses within a function evaluation (seePendin
This capability will be described in the V1.2 release where it will

Table 10 Specification detail for application interfaces

Description Specification Sample Status Default

Application
interface

({application} ...) application Required
group

N/A

Input filter [input_filter =
<STRING>]

input_filter =
‘ifilter.exe’

Optional no input
filter

Output filter [output_filter =
<STRING>]

output_filter =
‘ofilter.exe’

Optional nooutput
filter

Analysis
driver

{analysis_driver =
<STRING>}

analysis_driver
= ‘analysis.exe’

Required N/A

Failure
capturing

[{failure_capture}
{abort} | {retry =
<INTEGER>} |
{recover =
<LISTof><REAL>
} | {continuation}]

failure_capture
retry = 5

Optional
group

abort

DAK ace 209

D
C

S

D

In

C

s , and
omes a special case of

 type of application
roup specifications.
_file ,
file_save are
function evaluations
d with the
ynchronous function
are Components
ameters and results file
ults_file
ata transfer files being
 files). The
line of the system calls
mat of the data in
PREPRO format
pecial analysis
. This special
em call; however, it
if filters are
), such that the
ed inThe System Call
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Application Interf

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version
the existing facility to becomeinput_filter , analysis_driver
output_filter (in which the use of a single analysis driver bec
the generalized specification).

In addition to the general application interface specifications, the
interface involves a selection betweensystem or direct required g
For system call application interfaces,asynchronous , parameters
results_file , analysis_usage , aprepro , file_tag , and
additional settings within the group specification. Asynchronous
(system calls placed in the background with “&”) can be specifie
asynchronous specification, whereas the default behavior is s
evaluations (system calls in the foreground). Refer toEnabling Softw
for additional information on asynchronous procedures. The par
names are supplied as strings using theparameters_file andres
specifications. Both specifications are optional with the default d
temporary files (e.g.,/usr/tmp/aaaa08861 , seeUnix temporary
parameters and results file names are passed on the command
(refer to1-piece Interface and3-piece Interface for details). The for
these files is as described inDAKOTA File Data Formats with the A
option for parameters files invoked via theaprepro specification. S
command syntax can be entered as a string usinganalysis_usage
syntax replaces theanalysis_driver portion of DAKOTA’s syst
does not affect theinput_filter andoutput_filter syntax (
present). Its default is no special syntax (string default is‘DEFAULT’
analysis_driver will be used in the standard way as describ

DAK ace 210

D
C

S

D

In

C

sults files with the
g parameters and
controlled with the
tted, the default is no
e saving (files will be
when multiple function
k space, and file saving is
AKOTA and the

on interfaces are
face for additional

nterfaces
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Application Interf

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version
Application Interface. File tagging (appending parameters and re
function evaluation number; seeFile tagging) and file saving (leavin
results files in existence after their use is complete; seeFile saving) are
file_tag andfile_save flags. If these specifications are omi
file tagging (no appended function evaluation number) and no fil
removed after a function evaluation). File tagging is most useful
evaluations are running simultaneously using files in a shared dis
most useful when debugging the data communication between D
simulation. The additional specifications for system call applicati
summarized in Table 11. Refer toThe System Call Application Inter
details and examples.

Table 11 Additional specifications for system call application i

Description Specification Sample Status Default

Application
interface type

({system} ...) system Required
group

N/A

Evaluation
synchronizati
on

[asynchronous] asynchronous Optional synchrono
us
evaluations

Parameters
file name

[parameters_file
= <STRING>]

parameters_file
= ‘params.in’

Optional Unix temp
files

Results file
name

[results_file =
<STRING>]

results_file =
‘results.out’

Optional Unix temp
files

Special
analysis
usage syntax

[analysis_usage
= <STRING>]

analysis_usage
= ‘analysis.exe
< params.in >
results.out’

Optional standard
analysis
usage

DAK ace 211

D
C

S

D

In

C

rs , and
the required group.
be specified with the
ynchronous function
ponents for
servers and
figure multiprocessor

specified to define how
essor evaluation servers;
n
allelism for
e direct application

ces

nterfaces
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Application Interf

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

For direct application interfaces,asynchronous , evaluation_serve
processors_per_evaluation are additional settings within
Asynchronous function evaluations (POSIX multithreading) can
asynchronous specification, whereas the default behavior is s
evaluations (direct procedure calls). Refer toEnabling Software Com
additional information on asynchronous procedures. Theevaluation_
processors_per_evaluation specifications are used to con
partitions for multilevel parallelism. Typically, one or the other is
the processors allocated to an iterator are divided into multiproc
however, if both are specified and they are not in agreement, the
evaluation_servers takes precedence. Refer toSpecifying Par
additional details and examples on multiprocessor partitions. Th
interface specifications are summarized in Table 12.

Aprepro
format

[aprepro] aprepro Optional standard
format

File tag [file_tag] file_tag Optional no tagging

File save [file_save] file_save Optional no saving

Table 12 Additional specifications for direct application interfa

Description Specification Sample Status Default

Application
interface type

({direct} ...) direct Required
group

N/A

Table 11 Additional specifications for system call application i

Description Specification Sample Status Default

DAK ace 212

D
C

S

D

In

C

ces
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Application Interf

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Evaluation
synchronizati
on

[asynchronous] asynchronou
s

Optional synchrono
us
evaluations

Number of
evaluation
servers

[evaluation_ser
vers =
<INTEGER>]

evaluation_s
ervers = 5

Optional number of
processors
minus 1

Number of
processors
per evaluation

[processors_per
_evaluation =
<INTEGER>]

processors_p
er_evaluatio
n = 256

Optional 1

Table 12 Additional specifications for direct application interfa

Description Specification Sample Status Default

DAK rface 213

D
C

S

D

In

C

n of a true model (a
. This approximation is
pproximation

equential approximate
 which the goal is

ions performed with the

ion of one of the
urface ,
 a layered perceptron
tion Interface), a

Approximation
ltivariate adaptive
rface),
pecification.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Approximation Inte

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Approximation Interface

The approximation interface uses an approximate representatio
surrogate model) to perform the parameter to response mapping
built and updated using data from the true model as described inThe A
Interface. Approximation interfaces are used extensively in the s
optimization strategy (seeSequential Approximate Optimization), in
to reduce expense by minimizing the number of function evaluat
true model.

The approximation interface specification requires the specificat
following approximation methods:neural_network , response_s
multi_point , ormars_surface . These specifications invoke
artificial neural network approximation (see theThe ANN Approxima
quadratic polynomial response surface approximation (seeThe RSM
Interface), a multipoint approximation (not yet available), or a mu
regression spline approximation (seeThe MARS Approximation Inte
respectively. Table 13 summarizes the approximation interface s

Table 13 Specification detail for approximation interfaces

Description Specification Sample Status Default

Approximation
interface

({approximation}
...)

approximation Required
group

N/A

DAK rface 214

D
C

S

D

In

C

OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Approximation Inte

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Type {neural_network} |
{response_surface}
| {multi_point} |
{mars_surface}

neural_network Required N/A

Table 13 Specification detail for approximation interfaces

Description Specification Sample Status Default

DAK 215

D
C

S

D

In

C

rform the parameter to
DAKOTA executable as

unction

ing to identify the test

nal test problem.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Interface Commands - Test Interface

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Interface
ommands

Draft Version

Test Interface

The test interface uses an internally available test problem to pe
response mapping. These problems are compiled directly into the
part of the direct function application interface class (seeThe Direct F
Application Interface) and are used for algorithm testing.

The test interface specification requires the specification of a str
problem to be used. Table 14 summarizes this specification.

Currently, only the ‘text_book ’ simulator is available as an inter
Information on this problem is available in theExample Problems.

Table 14 Specification detail for test interfaces

Description Specification Sample Status Default

Test
interface

{test =
<STRING>}

test =
‘text_book’

Required N/A

DAKOTA User’s Instruct 216

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DAKOTA
Commands

Co
Int ds

i Blue text
indicates

a link to more
information.

De

Sp

Se

De

Un

Sta
ions (6/11/99) DAKOTA Commands - Variables Commands

Responses
Commands

Variables
Commands

Interface
Commands

mmands
roduction

Method
Comman

Strategy
Commands

Draft Version

Variables Commands

scription

ecification

t Identifier

sign Variables

certain Variables

te Variables

DAK 217

D
C

S

D

In

V
C

eter set to be iterated by
certain, and state variable
nd consist of those
l design. Each of the
pper bound, and a
ich are characterized by
n contain a distribution
nd, a histogram file name,
ete and consist of “other”
ce. Each state variable
bles provide a convenient
mesh density, simulation
 to enact model adaptivity

sign variables are
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Description

The variables section in a DAKOTA input file specifies the param
a particular method. This parameter set is made up of design, un
specifications. Design variables can be continuous or discrete a
variables which an optimizer adjusts in order to locate an optima
design parameters can have an initial point, a lower bound, an u
descriptive tag. Uncertain variables are continuous variables wh
probability distributions. Each uncertain variable specification ca
type, a mean, a standard deviation, a lower bound, an upper bou
and a descriptive tag. State variables can be continuous or discr
variables which are to be mapped through the simulation interfa
specification can have an initial state and a descriptor. State varia
mechanism for parameterizing additional model inputs, such as
convergence tolerances and time step controls, and will be used
in future strategy developments.

Several examples follow. In the first example, two continuous de
specified:

variables, \
continuous_design = 2 \
 cdv_initial_point 0.9 1.1 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘radius’ ‘location’

DAK 218

D
C

S

D

In

V
C

oint will
o vector values of
ds will default
lt to a vector of

us and discrete design
bles, and a set identifier is

\
\

\

\
\

\
\

\

\
\

\
\

\

\
\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version
In the next example, defaults are employed. In this case,cdv_initial_p
default to a vector of 0.0 values,cdv_upper_bounds will default t
DBL_MAX (defined in thefloat.h C header file),cdv_lower_boun
to a vector of-DBL_MAX values, andcdv_descriptor will defau
‘cdv_i’ strings, wherei goes from one to two:

variables, \
continuous_design = 2

In the last example, a variables specification containing continuo
variables, uncertain variables, continuous and discrete state varia
shown:

variables,
id_variables = ‘V1’
continuous_design = 2
 cdv_initial_point 0.9 1.1 \
 cdv_upper_bounds 5.8 2.9 \
 cdv_lower_bounds 0.5 -2.9 \
 cdv_descriptor ‘radius’ ‘location’ \
discrete_design = 1
 ddv_initial_point 2
 ddv_upper_bounds 1
 ddv_lower_bounds 3
 ddv_descriptor ‘material’ \
uncertain = 2
 uv_distribution_type = ‘normal’, ‘lognormal’ \
 uv_means = 250.0 480.0
 uv_std_deviations = 12.4 27.1
 uv_lower_bounds = 220.0 410.0
 uv_upper_bounds = 280.0 550.0
 uv_descriptor = ‘T_fail_1’ ‘T_fail_2’ \
continuous_state = 2
 csv_initial_state = 1.e-4 1.e-6 \
 csv_descriptor = ‘EPSIT1’ ‘EPSIT2’ \
discrete_state = 1
 dsv_initial_state = 100
 dsv_descriptor = ‘load_case’

DAK 219

D
C

S

D

In

V
C

nt types of variables is
 will only modify certain
. This implies that
rator will be mapped
r. This allows for a
which are being used by

s have to be made about
. Derivatives are never
tives do not exist) and the
pend on the type of study
unction derivatives are
 is the information
 for nondeterministic
, function derivatives are
eter study methods
t draw a distinction
be supplied with respect
ncertain, and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version
The most general case of having a mixture of each of the differe
supported within all of the iterators even though certain iterators
types of variables (e.g., optimizers only modify design variables)
variables which are not under the direct control of a particular ite
through the interface unmodified for all evaluations of the iterato
variety of parameterizations within the model in addition to those
a particular iterator.

Supporting the most general case is more difficult since decision
how to appropriately size gradient vectors and Hessian matrices
needed with respect to any discrete variables (since these deriva
types of continuous variables for which derivatives are needed de
being performed. For optimization and least squares problems, f
only needed with respect to thecontinuous design variables since this
used by the optimizer in computing a search direction. Similarly,
analysis methods which use gradient and/or Hessian information
only needed with respect to theuncertain variables. And lastly, param
which are cataloguing gradient and/or Hessian information do no
among continuous variables; therefore, function derivatives must
to all continuous variables that are specified (continuous design, u
continuous state variables).

DAK 220

D
C

S

D

In

V
C

\
\

 enclosing brackets
screte design, uncertain,
all optional. The set
er five are optionalgroup
s a unit. If any part of an
ust appear.

ifier string for labeling a
use of a particular set of
ification (see
iscrete design,
ions allows the user to
citly specifying that the
e type of variables must
wing sections describe
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Specification

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Specification

The variables specification has the following structure:
variables,

<set identifier>
<continuous design variables specification> \
<discrete design variables specification> \
<uncertain variables specification> \
<continuous state variables specification> \
<discrete state variables specification>

Referring to theIDR Input Specification File, it is evident from the
that the set identifier specification and the continuous design, di
continuous state, and discrete state variables specifications are
identifier is a stand-alone optional specification, whereas the latt
specifications, meaning that the group can either appear or not a
optional group is specified, then all required parts of the group m

The optional set identifier can be used to provide a unique ident
particular variables specification. A method can then identify the
variables by specifying this label in itsvariables_pointer spec
Method Commands). The optional status of the continuous and d
uncertain, and continuous and discrete state variables specificat
specify only those variables which are present (rather than expli
number of a particular type of variables = 0). However, at least on
have nonzero size or an input error message will result. The follo
each of these specification components in additional detail.

DAK 221

D
C

S

D

In

V
C

 to input a
ular method (see also
 a method whose
ariables set with

set will be used by a
 and if the
common practice, if only
 from the variables

method
se. Table 15 summarizes
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Set Identifier

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Set Identifier

The optional set identifier specification uses the keywordid_variables
string for use in identifying a particular variables set with a partic
variables_pointer in theMethod Commands). For example,
specification containsvariables_pointer = ‘V1’ will use a v
id_variables = ‘V1’ .

If the set identifier specification is omitted, a particular variables
method only if that method omits specifying avariables_pointer
variables set was the last set parsed (or is the only set parsed). In
one variables set exists, thenid_variables can be safely omitted
specification andvariables_pointer can be omitted from the
specification(s), since there is no potential for ambiguity in this ca
the set identifier inputs.

Table 15 Specification detail for set identifier

Description Specification Sample Status Default

Variables set
identifier

[id_variables =
<STRING>]

id_variables =
‘V1’

Optional use of last
variables
parsed

DAK es 222

D
C

S

D

In

V
C

up, the number of
itial guess, lower bounds,
iables are optional
bles specification group,
n and the initial guess,
 design variables are
 include zeros for initial
 bounds, and numbered
ntinuous design variable
 design variable
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Design Variabl

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Design Variables

Within the optional continuous design variables specification gro
continuous design variables is a required specification and the in
upper bounds, and variable names of the continuous design var
specifications. Likewise, within the optional discrete design varia
the number of discrete design variables is a required specificatio
lower bounds, upper bounds, and variable names of the discrete
optional specifications. Default values for optional specifications
values, positive and negative machine limits for upper and lower
strings for descriptors. Table 16 summarizes the details of the co
specification and Table 17 summarizes the details of the discrete
specification.

Table 16 Specification detail for continuous design variables

Descriptio
n

Specification Sample Status Default

Continuous
design
variables

[{continuous_design
= <INTEGER>} ...]

continuous_
design = 4

Optional
group

no
continuous
design
variables

Initial
point

[cdv_initial_point =
<LISTof><REAL>]

cdv_initial_
point =
1.,2.1,0.3,4.
2

Optional Vector
values =
0.0

DAK es 223

D
C

S

D

In

V
C

OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Design Variabl

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Lower
bounds

[cdv_lower_bounds
= <LISTof>
<REAL>]

cdv_lower_b
ounds = -1.,-
2.,0.,-4.2

Optional Vector
values = -
DBL_MAX

Upper
bounds

[cdv_upper_bounds
= <LISTof>
<REAL>]

cdv_upper_
bounds =
5.2,6.3,6.6,9
.1

Optional Vector
values =
+DBL_MA
X

Descriptors [cdv_descriptor =
<LISTof>
<STRING>]

cdv_descript
or = ‘c1’,
’c2’, ’c3’,
’c4’

Optional Vector of
‘cdv_i’
where i =
1,2,3...

Table 17 Specification detail for discrete design variables

Descriptio
n

Specification Sample Status Default

Discrete
design
variables

[{discrete_design =
<INTEGER>} ...]

discrete_desi
gn = 2

Optional
group

no discrete
design
variables

Initial
point

[ddv_initial_point =
<LISTof>
<INTEGER>]

ddv_initial_p
oint = 3, 5

Optional Vector
values = 0

Lower
bounds

[ddv_lower_bounds
= <LISTof>
<INTEGER>]

ddv_lower_b
ounds = 0, 0

Optional Vector
values =
INT_MIN

Table 16 Specification detail for continuous design variables

Descriptio
n

Specification Sample Status Default

DAK es 224

D
C

S

D

In

V
C

tions provide the
ntinuous and discrete
r_bounds ,
f the feasible design
he defaults for these
_MIN) which are

_descriptor
e replicated through
 parameters.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Design Variabl

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Thecdv_initial_point andddv_initial_point specifica
point in design space from which an iterator is started for the co
design variables, respectively. Thecdv_lower_bounds , ddv_lowe
cdv_upper_bounds andddv_upper_bounds restrict the size o
space and are frequently used to prevent nonphysical designs. T
bounds are linked to architecture constants (DBL_MAX, INT_MAX, INT
defined in thefloat.h andlimits.h system header files. Thecdv
andddv_descriptor specifications supply strings which will b
the Dakota output to help identify the numerical values for these

Upper
bounds

[ddv_upper_bounds
= <LISTof>
<INTEGER>]

ddv_upper_b
ounds = 10,
10

Optional Vector
values =
INT_MAX

Descriptors [ddv_descriptor =
<LISTof>
<STRING>]

ddv_descript
or = ‘d1’,
’d2’

Optional Vector of
‘ddv_i’
where i =
1,2,3,...

Table 17 Specification detail for discrete design variables

Descriptio
n

Specification Sample Status Default

DAK les 225

D
C

S

D

In

V
C

umber of uncertain
nd the means, standard
nd descriptors are
pecification is included,
st be supplied at a
 on default values. Table
.

ion
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Uncertain Variab

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Uncertain Variables

Within the optional uncertain variables specification group, the n
variables and the distribution types are required specifications a
deviations, lower bounds, upper bounds, histogram file names, a
optional specifications. That is, if the uncertain variables group s
then the number of uncertain variables and distribution types mu
minimum, whereas the other specifications in the group can rely
18 summarizes the details of the uncertain variable specification

Table 18 Specification detail for uncertain variables specificat

Description Specification Sample Status Default

Uncertain
variables

[{uncertain =
<INTEGER>} ...
]

uncertain = 2 Optional
group

no
uncertain
variables

Distribution
type

{uv_distribution_
type = <LISTof>
<STRING>}

uv_distribution_
type = ‘normal’,
‘lognormal’

Required N/A

Means [uv_means =
<LISTof>
<REAL>]

uv_means =
250., 480.

Optional Vector
values = 0

Standard
deviations

[uv_std_deviatio
ns = <LISTof>
<REAL>]

uv_std_deviatio
ns = 12.4, 27.1

Optional Vector
values = 0

DAK les 226

D
C

S

D

In

V
C

ibution used to
ution types are currently
‘logweibull’, and
tions provide this
d standard deviations
t). Likewise, the

 the distributions for
nds are linked to an
ader file. The
es of the histogram
ngs which will be

ion
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Uncertain Variab

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Theuv_distribution_type vector identifies the type of distr
describe the statistics of each uncertain variable. Allowable distrib
‘normal’, ‘lognormal’, ‘constant’, ‘uniform’, ‘loguniform’, ‘weibull’,
‘histogram’. Theuv_means anduv_std_deviations specifica
data for those distributions which are characterized by means an
(normal and weibull are; constant, uniform, and histogram are no
uv_lower_bounds anduv_upper_bounds restrict the tails of
those distributions for which bounds are meaningful. Default bou
architecture constant (DBL_MAX) defined in thefloat.h system he
uv_filenames specification provides the file names for variabl
distribution type. Theuv_descriptor specification provides stri

Lower
bounds

[uv_lower_bound
s = <LISTof>
<REAL>]

uv_lower_boun
ds = 220., 410.

Optional Vector
values =-
DBL_MAX

Upper
bounds

[uv_upper_bound
s = <LISTof>
<REAL>]

uv_upper_boun
ds = 280., 550.

Optional Vector
values=+
DBL_MAX

Histogram
file names

[uv_filenames =
<LISTof>
<STRING>]

uv_filenames =
‘T_fail1.dat’,
‘T_fail2.dat’

Optional no
histogram
file names

Descriptors [uv_descriptor =
<LISTof>
<STRING>]

uv_descriptor =
‘T_fail1’,
‘T_fail2’

Optional Vector of
‘uv_i’
where i =
1,2,3,...

Table 18 Specification detail for uncertain variables specificat

Description Specification Sample Status Default

DAK les 227

D
C

S

D

In

V
C

al values for these

 the number of uncertain
each of theuv_means ,

, and
ith place holders. For
gram’, then
’s are place holders in
y standard deviations.
e only the histogram
 was chosen since it is
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - Uncertain Variab

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version
replicated through the Dakota output to help identify the numeric
parameters.

Each of the vector inputs, if specified, must be of length equal to
variables. Since certain distribution types may not have values for
uv_std_deviations , uv_lower_bounds , uv_upper_bounds
uv_filenames specifications, these arrays should be padded w
example, ifuv_distribution_type = ‘normal’, ‘uniform’, ‘histo
uv_std_deviations might equal 12.0, 0, 0 where the trailing 0
the array since uniform and histogram distributions do not specif
Likewise,uv_filenames would be specified as ‘’, ‘’, ‘file.dat’ sinc
distribution type requires a file name specification. This behavior
believed to be more readable at a glance.

DAK s 228

D
C

S

D

In

V
C

p, the number of
ecifications and the
e, within the discrete
variables and their initial
tor is an optional

for managing additional
ergence tolerances, and
uous state variable
 state variable
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - State Variable

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

State Variables

Within the optional continuous state variables specification grou
continuous state variables and their initial states are required sp
continuous descriptor vector is an optional specification. Likewis
state variables specification group, the number of discrete state
states are required specifications and the discrete descriptor vec
specification. These variables provide a convenient mechanism
model parameterizations such as mesh density, simulation conv
time step controls. Table 19 summarizes the details of the contin
specification and Table 20 summarizes the details of the discrete
specification.

Table 19 Specification detail for continuous state variables

Description Specification Sample Status Default

Continuous
state
variables

[{continuous_state
= <INTEGER>} ...]

continuous
_state = 2

Optional
group

No
continuous
state
variables

Initial states {csv_initial_state =
<LISTof><REAL>}

csv_initial_
state = 3.1,
4.2

Required N/A

Descriptors [csv_descriptor =
<LISTof><STRING
>]

csv_descrip
tor =
‘EPSIT1’,
‘EPSIT2’

Optional Vector of
‘csv_i’
wherei =
1,2,3,...

DAK s 229

D
C

S

D

In

V
C

tions define the
h will be passed through
 controls). The
s which will be
al values for these
OTA User’s Instructions (6/11/99) DAKOTA Commands - Variables Commands - State Variable

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

ariables
ommands

Draft Version

Thecsv_initial_state anddsv_initial_state specifica
initial values for the continuous and discrete state variables whic
to the simulator (e.g., in order to define parameterized modeling
csv_descriptor anddsv_descriptor vectors provide string
replicated through the Dakota output to help identify the numeric
parameters.

Table 20 Specification detail for discrete state variables

Description Specification Sample Status Default

Discrete
state
variables

[{discrete_state =
<INTEGER>} ...]

discrete_sta
te = 2

Optional
group

Nodiscrete
state
variables

Initial states {dsv_initial_state =
<LISTof><REAL>}

dsv_initial_
state = 3, 4

Required N/A

Descriptors [dsv_descriptor =
<LISTof><STRING
>]

dsv_descrip
tor =
‘material1’,
‘material2’

Optional Vector of
‘dsv_i’
wherei =
1,2,3,...

DAKOTA User’s Instruct 230

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DAKOTA
Commands

Co
Int ds

i Blue text
indicates

a link to more
information.

De

Sp

Se

Ac

Fu

Gr

He
ions (6/11/99) DAKOTA Commands - Responses Commands

Interface
Commands

Responses
Commands

Variables
Commands

mmands
roduction

Method
Comman

Strategy
Commands

Draft Version

Responses Commands

scription

ecification

t Identifier

tive Set Vector Usage

nction specification
Objective and Constraint Functions (Optimization Data Set)
Least Squares Terms (Least Squares Data Set)
Response Functions (Generic Data Set)

adient specification
No Gradients
Numerical Gradients
Analytic Gradients
Mixed Gradients

ssian specification
No Hessians
Analytic Hessians

DAK 231

D
C

S

D

In

R
C

 data set that can be
data set is made up of a
r second derivative
ntainer (the

y depending upon the
set of functions consists
iobjective optimization)
sponse set since their
 then computed internally
st squares iterators,
 squares objective
iterators). In the case of
 response functions for
tly, parameter study
ithin the C++
ch of these response data
ranch to iterator branch.

radients .
 in the study.
eeded and will be
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Description

The responses specification in a DAKOTA input file specifies the
recovered from the interface during the course of iteration. This
set of functions, their first derivative vectors (gradients), and thei
matrices (Hessians). This abstraction provides a generic data co
DakotaResponse class) whose contents are interpreted differentl
type of iteration being performed. In the case of optimization, the
of an objective function (or objective functions in the case of mult
and nonlinear constraints. Linear constraints are not part of a re
coefficients can be communicated to an optimizer at startup and
for all function evaluations (seeNPSOL Method). In the case of lea
the functions consist of individual residual terms (not the sum of the
function; this function is computed internally by the least squares
nondeterministic iterators, the function set is made up of generic
which the effect of parameter uncertainty is to be quantified. Las
iterators may be used with any of the response data set types. W
implementation, the same data structures are used to provide ea
set types; only the interpretation of the data varies from iterator b

Gradient availability may be described byno_gradients ,
numerical_gradients , analytic_gradients, or mixed_g
“no_gradients ” means that gradient information is not needed
“numerical_gradients ” means that gradient information is n

DAK 232

D
C

S

D

In

R
C

 the vendor finite
ent information is
uired). And

available directly from

hessians
ient availability settings.
se of optimization, this
ct algorithm already

ed arises.

et that is available for use
uished from the data
) which describes
ation. Put another

a that is available whereas
ble data that is currently

n data set of an objective
ve analytic gradient

\
\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version
computed with finite differences using either the native or one of
differencing routines. “analytic_gradients ” means that gradi
available directly from the simulation (finite differencing is not req
“mixed_gradients ” means that some gradient information is
the simulation whereas the rest will have to be finite differenced.

Hessian availability may be described byno_hessians or analytic_
where the meanings are the same as for the corresponding grad
Numerical Hessians are not currently supported, since, in the ca
would imply a finite difference-Newton technique for which a dire
exists. Capability for numerical Hessians can be added if the ne

The responses specification provides a description of the data s
by the iteratorduring the course of its iteration. This should be disting
set described in an active set vector (seeDAKOTA File Data Formats
the subset of the available data neededon a particular function evalu
way, the responses specification is a broad description of the dat
the active set vector describes the particular subset of the availa
needed.

Several examples follow. The first example shows an optimizatio
function and two nonlinear constraints. These three functions ha
availability and no Hessian availability.

responses,
num_objective_functions = 1
num_nonlinear_constraints = 2
analytic_gradients
no_hessians

DAK 233

D
C

S

D

In

R
C

 set. The six residual
ta finite differencing
 .001*value).

\
\
\

\
\

\

nondeterministic iterator.
bility; therefore, only

\
\

\

se data sets which may be
ion examples shown
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version
The next example shows a specification for a least squares data
functions will have numerical gradients computed using the dako
routine with central differences of 0.1% (plus/minus delta value =

responses,
num_least_squares_terms = 6
numerical_gradients

method_source dakota
interval_type central
fd_step_size = .001

no_hessians

The last example shows a specification that could be used with a
The three response functions have no gradient or Hessian availa
function values will be used by the iterator.

responses,
num_response_functions = 3
no_gradients
no_hessians

Parameter study iterators are not restricted in terms of the respon
catalogued; they may be used with any of the function specificat
above.

DAK n 234

D
C

S

D

In

R
C

\
\

\
\
\

 enclosing brackets
ns are optional. However,
d specifications, each of
cal OR’s. The function
bjective and constraint
e functions specification.
ients, 2) numerical
essian specification must

ifier string for labeling a
e use of a particular
ecification (see
e user to turn off active
eglect to include active

unction, gradient, and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Specificatio

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Specification

The responses specification has the following structure:
responses,

<set identifier>
<active set vector usage>
<function specification>
<gradient specification>
<hessian specification>

Referring to theIDR Input Specification File, it is evident from the
that the set identifier and the active set vector usage specificatio
the function, gradient, and Hessian specifications are all require
which contains several possible specifications separated by logi
specification must be one of three types: 1) a group containing o
functions, 2) a least squares terms specification, or 3) a respons
The gradient specification must be one of four types: 1) no grad
gradients, 3) analytic gradients, or 4) mixed gradients. And the H
be either 1) no Hessians or 2) analytic Hessians.

The optional set identifier can be used to provide a unique ident
particular responses specification. A method can then identify th
response set by specifying this label in itsresponses_pointer sp
Method Commands). The active set vector usage setting allows th
set distinctions (default is on) so that a simulation interface can n
set logic (at the possible penalty of wasted computations). The f

DAK n 235

D
C

S

D

In

R
C

 from the interface. The
nts in additional detail.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Specificatio

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version
Hessian specifications define the data set that can be recovered
following sections describe each of these specification compone

DAK r 236

D
C

S

D

In

R
C

s to input a
icular method (see also
 a method whose
esponses set with

used by a method only if
sponses set was the
f only one responses set
nses specification and
ation(s), since there is
 set identifier inputs.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Set Identifie

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Set Identifier

The optional set identifier specification uses the keywordid_response
string for use in identifying a particular responses set with a part
responses_pointer in theMethod Commands). For example,
specification containsresponses_pointer = ‘R1’ will use a r
id_responses = ‘R1’ .

If this specification is omitted, a particular responses set will be
that method omits specifying aresponses_pointer and if the re
last set parsed (or is the only set parsed). In common practice, i
exists, thenid_responses can be safely omitted from the respo
responses_pointer can be omitted from the method specific
no potential for ambiguity in this case. Table 21 summarizes the

Table 21 Specification detail for set identifier

Description Specification Sample Status Default

Responses
set identifier

[id_responses =
<STRING>]

id_responses =
‘R1’

Optional use of last
responses
parsed

DAK Usage 237

D
C

S

D

In

R
C

SV) usageon or off .
escribed inDAKOTA
to always request a

available in the problem
on. For example, if
onse functions, analytic
n will be a vector of
data is currently needed.

the need for ASV-related
in requests of only
quire the user’s interface
ditionally returning only
need for this
n every evaluation. In
ugh the elimination of
ntrol set tooff can

 applications.

r’s interface must match
. The important
 do not change from
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Active Set Vector

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Active Set Vector Usage

A future capability will be the option to turn the active set vector (A
Currently, only the defaulton setting is supported; its behavior is d
File Data Formats. Setting the ASV control tooff will cause Dakota
“full” data set (the full function, gradient, and Hessian data that is
as specified in the responses specification)on each function evaluati
ASV control isoff and the responses section specifies four resp
gradients, and no Hessians, then the ASV onevery function evaluatio
length four containing all threes, regardless of what subset of this
While wasteful of computations in many instances, this removes
logic in user-built interfaces. That is, ASV control set toon will result
that specific data which is needed on each evaluation and will re
to read the ASV requests and perform the appropriate logic in con
the data requested. Conversely, ASV control set tooff removes the
additional logic and allows the user to return the same data set o
general, the defaulton behavior is recommended for efficiency thro
unnecessary computations, although in some instances, ASV co
simplify operations and speed filter development for time critical

Note that in all cases, the data returned to DAKOTA from the use
the ASV passed in (or else a response recovery error will result)
observation is that when ASV control isoff , the ASV vector values

DAK Usage 238

D
C

S

D

In

R
C

hecked on every
ting.

cation
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Active Set Vector

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version
one evaluation to the next. Therefore their content need not be c
evaluation. Table 22 summarizes the active set vector usage set

Table 22 Specification detail for active set vector usage specifi

Description Specification Sample Status Default

Active set
vector usage

[{active_set_vector}
{on} | {off}]

active_set_vector
on

Optional
group

on

DAK cation 239

D
C

S

D

In

R
C

containing objective and
 a response functions
ast squares, and
y iterators may be used

 Data Set)

, and
ization is not yet

should be set
t of linear constraints
ts in
PT do not yet support
ear constraints should be
nt. Table 23
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Function specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Function specification

The function specification must be one of three types: 1) a group
constraint functions, 2) a least squares terms specification, or 3)
specification. These function sets correspond to optimization, le
uncertainty quantification iterators, respectively. Parameter stud
with any of the three function specifications.

Objective and Constraint Functions (Optimization

An optimization data set is specified usingnum_objective_functions
optionallynum_nonlinear_constraints . Multiobjective optim
supported within the optimizer branch, sonum_objective_functions
to one when using DOT, NPSOL, OPT++, or SGOPT. Direct inpu
can be used to improve the efficiency of NPSOL (seelinear_constrain
Method Independent Controls). However, DOT, OPT++, and SGO
specialized handling of linear constraints; in these cases, any lin
included in the more generalnum_nonlinear_constraints cou
summarizes the optimization data set specification.

DAK cation 240

D
C

S

D

In

R
C

. Each of
se types of problems are
ation. Least squares
 squares solvers such as
 be solved using general-
ile DAKOTA can solve
s, the response data sets

olves a set of residual
n (sum of the squares of
se involves derivatives of
 derivatives of the sum of
aches will likely require
ranularity of response
pecification.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Function specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Least Squares Terms (Least Squares Data Set)

A least squares data set is specified usingnum_least_squares_terms
these terms is a residual function to be driven towards zero. The
commonly encountered in parameter estimation and model valid
problems are most efficiently solved using special-purpose least
Gauss-Newton or Levenberg-Marquardt; however, they may also
purpose optimization algorithms. It is important to realize that, wh
these problems with either least squares or optimization algorithm
to be returned from the simulator are different. Least squares inv
functions whereas optimization involves a single objective functio
the residuals). Therefore, derivative data in the least squares ca
the least squares terms, whereas the optimization case involves
the squares objective function. Switching between the two appro
different simulation interfaces capable of returning the different g
data required. Table 24 summarizes the least squares data set s

Table 23 Specification detail for optimization data sets

Description Specification Sample Status Default

Number of
objective
functions

({num_objective_functions
= <INTEGER>} ...)

num_objective
_functions = 1

Required
group

N/A

Number of
nonlinear
constraints

[num_nonlinear_constraint
s = <INTEGER>]

num_nonlinear
_constraints =
2

Optional 0

DAK cation 241

D
C

S

D

In

R
C

ns . Each of
special interpretation
ertainty quantification
e functions is quantified,
tudies are not restricted to
onse functions is
 have special meanings
rithms (i.e., their usage is
quantification or
due primarily to the fact
hese algorithms as a basis
o define whatever
esponse function data set

sets
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Function specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Response Functions (Generic Data Set)

A generic response data set is specified usingnum_response_functio
these functions is simply a response quantity of interest with no
taken by the method in use. This type of data set is used by unc
methods, in which the effect of parameter uncertainty on respons
and can also be used in parameter studies (although parameter s
this data set), in which the effect of parameter variations on resp
evaluated. Whereas objective, constraint, and residual functions
within the data sets used by optimization and least squares algo
linked to their identity), the response functions in an uncertainty
parameter study need not have a specific interpretation. This is
that the values of these response functions are not fed back to t
for additional iterative improvement. Therefore, the user is free t
functional form is convenient. Table 25 summarizes the generic r
specification.

Table 24 Specification detail for nonlinear least squares data

Description Specification Sample Status Default

Number of
LeastSquares
Terms

{num_least_squares
_terms =
<INTEGER>}

num_least_squares
_terms = 20

Required N/A

DAK cation 242

D
C

S

D

In

R
C

ta sets
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Function specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Table 25 Specification detail for generic response function da

Description Specification Sample Status Default

Number of
Response
Functions

{num_response_
functions =
<INTEGER>}

num_response_
functions = 2

Required N/A

DAK cation 243

D
C

S

D

In

R
C

ients, 2) numerical

n is not needed in the
or computed with finite
ase.

 information is needed
e or one of the vendor

 the source of the
al gradients:dakota
 denotes the finite
T, NPSOL, and OPT++
 routine was
m when they are aware
hides this fact from
lied gradients, which they
 setting to trigger
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Gradient specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Gradient specification

The gradient specification must be one of four types: 1) no grad
gradients, 3) analytic gradients, or 4) mixed gradients.

No Gradients

Theno_gradients specification means that gradient informatio
study. Therefore, it will neither be retrieved from the simulation n
differences.no_gradients is a complete specification for this c

Numerical Gradients

Thenumerical_gradients specification means that gradient
and will be computed with finite differences using either the nativ
finite differencing routines. Themethod_source setting specifies
finite difference routine that will be used to compute the numeric
denotes DAKOTA’s internal finite differencing algorithm andvendor
differencing algorithm supplied by the iterator package in use (DO
each have their own internal finite differencing routines). Thevendor
chosen as the default since certain libraries modify their algorith
that finite differencing is being performed. Since thedakota routine
the optimizers (the optimizers are configured to accept user-supp
assume to be of analytic accuracy), the potential exists for thevendor

DAK cation 244

D
C

S

D

In

R
C

nd/or lower accuracy of
when in user-supplied
hen internally finite
uce expense in serial
loit the parallelism in
, NPSOL’s use of
es excellent load
ulative optimization
enorward and
 DAKOTA, DOT, and
ilable, and NPSOL
l differences as
y,tep_size
mputations. For
plying the
 minimum absolute
 is close to zero. This
o small to distinguish
, DOT, and OPT++ all
ing interval. With a
++ will use intervals
ses a different

rent parameter
for a minimum absolute
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Gradient specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version
the use of an algorithm more optimized for the higher expense a
finite-differencing (e.g., NPSOL uses gradients in its line search
gradient mode, but uses a value-based line search procedure w
differencing). However, while this algorithm modification may red
operations, thedakota routine is preferable when seeking to exp
finite difference evaluations (seeExploiting Parallelism). And in fact
gradients in its line search (user-supplied gradient mode) provid
balancing for parallel optimization without need to resort to spec
approaches. Theinterval_type setting is used to select betwef
central differences in the numerical gradient calculations. The
OPT++ routines have bothforward andcentral differences ava
starts withforward differences and automatically switches tocentra
the iteration progresses (the user has no control over this). Lastlfd_s
specifies therelative finite difference step size to be used in the co
DAKOTA, DOT, and OPT++, the intervals are computed by multi
fd_step_size with the current parameter value. In this case, a
differencing interval is needed when the current parameter value
prevents finite difference intervals for the parameter which are to
differences in the response quantities being computed. DAKOTA
use1.e-2*fd_step_size as their minimum absolute differenc
fd_step_size = .001 , for example, DAKOTA, DOT, and OPT
of .001* current value with a minimum interval of1.e-5 . NPSOL u
formula for its finite difference intervals:fd_step_size*(1+| cur
value|) . This definition has the advantage of eliminating the need

DAK cation 245

D
C

S

D

In

R
C

the current parameter
t specification.

formation is available
he simulation must
ta Formats) for
ete specification for
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Gradient specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version
differencing interval since the interval no longer goes to zero as
value goes to zero. Table 26 summarizes the numerical gradien

Analytic Gradients

Theanalytic_gradients specification means that gradient in
directly from the simulation (finite differencing is not required). T
return the gradient data in the DAKOTA format (seeDAKOTA File Da
the case of file transfer of data.analytic_gradients is a compl
this case.

Table 26 Specification detail for numerical gradients

Description Specification Sample Status Default

Numerical
gradients

({numerical_gradients}
...)

numerical_grad
ients

Required
group

N/A

Method
source

[{method_source}
{dakota} | {vendor}]

method_source,
dakota

Optional
group

vendor

Interval
Type

[{interval_type}
{forward} | {central}]

interval_type,
forward

Optional
group

forward

Finite
difference
step size

[fd_step_size =
<REAL>]

fd_step_size =
0.001

Optional 0.001

DAK cation 246

D
C

S

D

In

R
C

t information is
 will have to be finite
nerally wise to make use
o finite difference for the
ic function of the design
plicit functions of
ecifies by number
 list specifies by
d_source ,
cribed previously
functions listed by the
ecification.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Gradient specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Mixed Gradients

Themixed_gradients specification means that some gradien
available directly from the simulation (analytic) whereas the rest
differenced (numerical). This specification is useful since it is ge
of as much analytic gradient information as is available and then t
rest. For example, the objective function may be a simple analyt
variables (e.g., weight) whereas the constraints are nonlinear im
complex analyses (e.g., maximum stress). Theid_analytic list sp
the functions which have analytic gradients, and theid_numerical
number the functions which must use numerical gradients. Themetho
interval_type , andfd_step_size specifications are as des
under theNumerical Gradients specification and pertain to those
id_numerical list. Table 27 summarizes the mixed gradient sp

Table 27 Specification detail for mixed gradients

Description Specification Sample Status Default

Mixed
gradients

({mixed_gradients}
...)

mixed_gradients Required
group

N/A

Analytic
derivatives
function list

{id_analytic =
<LISTof>
<INTEGER>

id_analytic = 2,4 Required N/A

Numerical
derivatives
function list

{id_numerical =
<LISTof>
<INTEGER>}

id_numerical =
1,3,5

Required N/A

DAK cation 247

D
C

S

D

In

R
C

OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Gradient specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Method
source

[{method_source}
{dakota} | {vendor}]

method_source,
dakota

Optional
group

vendor

Interval
Type

[{interval_type}
{forward} | {central}]

interval_type,
forward

Optional
group

forward

Finite
difference
step size

[fd_step_size =
<REAL>]

fd_step_size =
0.001

Optional 0.001

Table 27 Specification detail for mixed gradients

Description Specification Sample Status Default

DAK cation 248

D
C

S

D

In

R
C

pported, since, in the
technique for which a
can be added if the need

t require Hessian
tion nor computed with
is case.

ormation is available
an data in the DAKOTA
er of data.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Responses Commands - Hessian specifi

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

esponses
ommands

Draft Version

Hessian specification

Hessian availability must be specified with eitherno_hessians or
analytic_hessians . Numerical Hessians are not currently su
case of optimization, this would imply a finite difference-Newton
direct algorithm already exists. Capability for numerical Hessians
arises.

No Hessians

Theno_hessians specification means that the method does no
information. Therefore, it will neither be retrieved from the simula
finite differences.no_hessians is a complete specification for th

Analytic Hessians

Theanalytic_hessians specification means that Hessian inf
directly from the simulation. The simulation must return the Hessi
format (seeDAKOTA File Data Formats) for the case of file transf
analytic_hessians is a complete specification for this case.

DAKOTA User’s Instruct 249

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

DAKOTA
Commands

Co
Int ds

i Blue text
indicates

a link to more
information.

De

Sp

Sin

Mu

Se

Op

Bra
ions (6/11/99) DAKOTA Commands - Strategy Commands

Responses
Commands

Strategy
Commands

Variables
Commands

mmands
roduction

Method
Comman

Interface
Commands

Draft Version

Strategy Commands

scription

ecification

gle Method Commands

ltilevel Hybrid Optimization Commands

quential Approximate Optimization Commands

timization Under Uncertainty Commands

nch and Bound Commands

DAK 250

D
C

S

D

In

C

el technique which will
f the problem of interest.

pt ,
ethod . In a

d which will be used
xploit the strengths of
ptimization process.
inear programming) are
lanced with the need for

e optimization
sign and analysis of
model. These results are
rface or an artificial neural
mputes an approximate
he measured
daries (i.e., trust region)
e new point and
onvergence. The goal

ulations required for
rtainty), a
in variable distributions
 are then included in the
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Description

The strategy section in a DAKOTA input file specifies the top lev
govern the management of iterators and models in the solution o
Five strategies currently exist:multi_level , seq_approximate_o
opt_under_uncertainty , branch_and_bound , andsingle_m
multi_level optimization strategy, a list of methods is specifie
synergistically in seeking an optimal design.The goal here is to e
different optimization algorithms through different stages of the o
Global/local hybrids (e.g., genetic algorithms combined with nonl
a common example in which the desire for a global optimum is ba
efficient navigation to a local optimum. In sequential approximat
(seq_approximate_opt), a set of points is selected from a de
computer experiments (DACE) and evaluated with the simulation
then used to build an approximate model, such as a response su
network. An optimizer iterates on this approximate model and co
optimum. This point is evaluated with the simulation model and t
improvement in the simulation model is used to modify the boun
of the approximation. The approximation is then updated with th
additional approximate optimization cycles are performed until c
with seq_approximate_opt is to reduce the total number of sim
the optimization. In optimization under uncertainty (opt_under_unce
nondeterministic iterator is used to evaluate the effect of uncerta
on responses of interest. These responses and/or their statistics

DAK 251

D
C

S

D

In

C

e nondeterministic
with approximations, or
 strategy
can be solved through
nstraints. Lastly, the
tion of a single iterator.

ifier strings, and each
 has the
es specifications that
specify one iterator,
iables and responses
ainty
tors and, again, each of
 interface, and responses
nt since optimization
d_bound
 iterator servers to be
ntifier which in turn

 may specify nothing
specifications parsed.
specification is present
 source for confusion in
strategy specification
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version
objective and constraint functions of an optimization process. Th
iteration may be nested within the optimization iteration, nested
segregated in an uncoupled approach. In the branch and bound
(branch_and_bound), mixed continuous/discrete applications
parameter domain decomposition and relaxation of integrality co
single_method strategy provides the means for simple execu

The specification formulti_level involves a list of method ident
of the corresponding method specifications (seeMethod Commands)
responsibility for identifying the variables, interface, and respons
each method will use. Theseq_approximate_opt strategy must
an approximate interface, and an actual interface. The same var
specifications will be used by both interfaces. Theopt_under_uncert
strategy must specify the optimization and nondeterministic itera
the corresponding method specifications points to the variables,
specifications to be used (which, in this case, will likely be differe
and nondeterministic methods use different data sets). Thebranch_an
strategy must specify one iterator and the number of concurrent
utilized. Thesingle_method strategy may specify a method ide
specifies the variables, interface, and responses identifiers, or it
additional and invoke the default behavior of employing the last
Invoking the default behavior is particularly appropriate if only one
for method, variables, interface, and responses since there is no
this case. In addition,single_method is the default strategy if no
is supplied.

DAK 252

D
C

S

D

In

C

 example is:
\

\

\
\
\

\
\

\

\
\

\

\
\

strategy layer manages
. Refer toExploiting
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version
Example specifications for the five strategies follow. Amulti_level

strategy,
multi_level uncoupled

method_list = ‘GA1’, ‘CPS1’, ‘NLP1’

A seq_approximate_opt example specification is:
strategy,

seq_approximate_opt
opt_method = ‘NLP1’
approximate_interface = ‘resp_surf’ \
actual_interface = ‘simulation’

An opt_under_uncertainty example specification is:
strategy,

opt_under_uncertainty
opt_method = ‘NLP1’
nond_method = ‘LHS_MC’

A branch_and_bound example specification is:
strategy,

branch_and_bound
opt_method = ‘NLP1’
iterator_servers = 4

A single_method example specification is:
strategy,

single_method
method_pointer = ‘NLP1’

In addition to management of multiple iterators and models, the
the division of operations between master and slave processors
Parallelism for additional details.

DAK 253

D
C

S

D

In

C

\

ve strategy

ethod) are
Thus, one and only one

els (or more specifically,
ls for interaction (e.g.,
odels are specified using

 and interface
OT be confused with
lication). The
 in additional detail.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Specification

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Specification

The strategy specification has the following structure:
strategy,

<single_method> or <multi_level> or <seq_approximate_opt> or
<opt_under_uncertainty> or <branch_and_bound>

Referring to theIDR Input Specification File, it is evident that the fi
specifications (multi_level , seq_approximate_opt ,
opt_under_uncertainty , branch_and_bound , orsingle_m
required groups (enclosing in parentheses) separated by OR’s.
strategy specification must be provided.

The various strategy specifications identify the methods and mod
interfaces) that will be employed in the strategy as well as contro
switching) between the methods and models. The methods and m
string pointers that correspond to identifier strings in the method
specifications (such as ‘method1’ or ‘interface1’). They should N
method selections (such asdot_mmfd) or interface types (such asapp
following sections describe each of these strategy specifications

DAK mands 254

D
C

S

D

In

C

ethod keyword
ed to point to a
ints to the method
ointer is not
he iterator. Invoking this
ion is present since there
rizes the

jects and algorithm
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Single Method Com

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Single Method Commands

Thesingle_method strategy may be specified using thesingle_m
by itself, or an optionalmethod_pointer may additionally be us
particular method. For example,method_pointer = ‘NLP1’ po
whose specification containsid_method = ‘NLP1’ . If method_p
used, then the last method specification parsed will be used as t
default behavior is most appropriate if only one method specificat
is no potential source of confusion in this case. Table 28 summa
single_method strategy inputs.

Refer toSingle Method for an overview of thesingle_method ob
logic.

Table 28 Specification detail for single_method strategies

Description Specification Sample Status Default

Singlemethod
strategy

({single_method}
...)

single_method Required
group

N/A

Method
pointer

[method_pointer
= <STRING>]

method_pointer
= ‘NLP1’

Optional use of last
method
parsed

DAK on Commands 255

D
C

S

D

In

C

ommands

ncoupled adaptive, and
nformation on the
method strings supplied
quence of iterators to
d adaptive approach may
 in specified, then
red part of the optional
s managed through the
case, however, method
etween 0.0 and 1.0) falls
rizes the uncoupled

ies
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Multilevel Hybrid Optimizati

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Multilevel Hybrid Optimization C

Themulti_level hybrid optimization strategy has uncoupled, u
coupled approaches (seeMultilevel Hybrid Optimization for more i
algorithms employed). In the two uncoupled approaches, a list of
with themethod_list specification specifies the identity and se
be used. Any number of iterators may be specified. The uncouple
be specified by turning on theadaptive flag. If theadaptive flag
progress_threshold must also be specified since it is a requi
group specification. In the nonadaptive case, method switching i
separate convergence controls of each method. In the adaptive
switching occurs when the internal progress metric (normalized b
below the user specifiedprogress_threshold . Table 29 summa
multi_level strategy inputs.

Table 29 Specification detail for uncoupled multi_level strateg

Description Specification Sample Status Default

Multi-level
strategy

({multi_level} ...) multi_level Required
group

N/A

uncoupled
approach

({uncoupled} ...) uncoupled Required
group

N/A

adaptive
control

[{adaptive}
{progress_thresho
ld = <REAL>}]

adaptive,
progress_thresh
old = 0.5

Optional
group

no
adaptive
control

DAK on Commands 256

D
C

S

D

In

C

d with the
e two methods to be
specification for
al search to improve
pledulti_level

ies
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Multilevel Hybrid Optimizati

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

In the coupled approach, global and local method strings supplie
global_method andlocal_method specifications identify th
used. Thelocal_search_probability setting is as optional
supplying the probability (between 0.0 and 1.0) of employing loc
estimates within the global search. Table 30 summarizes the coum
strategy inputs.

List of
methods

{method_list =
<LISTof>
<STRING}

method_list =
‘GA1’, ‘CPS1’,
‘NLP1’

Required N/A

Table 30 Specification detail for coupled multi_level strategies

Description Specification Sample Status Default

Multi-level
strategy

({multi_level} ...) multi_level Required
group

N/A

coupled
approach

({coupled} ...) coupled Required
group

N/A

Global
method

{global_method =
<STRING>}

global_method
= ‘GA1’

Required N/A

Local
method

{local_method =
<STRING>}

local_method
= ‘NLP1’

Required N/A

Local search
probability

[local_search_prob
ability = <REAL>]

local_search_p
robability = 0.5

Optional 0.1

Table 29 Specification detail for uncoupled multi_level strateg

Description Specification Sample Status Default

DAK on Commands 257

D
C

S

D

In

C

ted is responsible for
ecifications (using
pointer ; see
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Multilevel Hybrid Optimizati

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version
In either the uncoupled or coupled case, each of the methods lis
cross-referencing its own variables, interface, and responses sp
interface_pointer , variables_pointer , andresponses_
Method Independent Controls) within its method specification.

DAK ization Commands 258

D
C

S

D

In

C

ation

singopt_method ,
n application
entified by
ponses specifications
d
31 summarizes the

ies
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Sequential Approximate Optim

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Sequential Approximate Optimiz
Commands

Theseq_approximate_opt strategy must specify an iterator u
an approximate interface usingapproximate_interface , and a
interface usingactual_interface . The method specification id
opt_method is responsible for pointing to the variables and res
that will be used by both interfaces (usingvariables_pointer an
responses_pointer ; seeMethod Independent Controls). Table
seq_approximate_opt strategy inputs.

Table 31 Specification detail for seq_approximate_opt strateg

Description Specification Sample Status Default

Sequential
approximate
optimization
strategy

({seq_approximate
_opt} ...)

seq_approximate_
opt

Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method =
‘NLP1’

Required N/A

Approximate
interface

{approximate_inter
face = <STRING>}

approximate_inter
face = ‘resp_surf’

Required N/A

Actual
interface

{actual_interface =
<STRING>}

actual_interface =
‘simulation’

Required N/A

DAK ization Commands 259

D
C

S

D

In

C

the
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Sequential Approximate Optim

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version
Refer toSequential Approximate Optimization for an overview of
seq_approximate_opt objects and algorithm logic.

DAK inty Commands 260

D
C

S

D

In

C

Commands

ization iterator using
The method
sponsible for
 to be used by these
nd
 optimization and

riables, interface, and
stinct. Table 32

ies
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Optimization Under Uncerta

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Optimization Under Uncertainty

Theopt_under_uncertainty strategy must specify an optim
opt_method and a nondeterministic iterator usingnond_method .
specifications identified byopt_method andnond_method are re
pointing to the variables, interface, and responses specifications
methods (usinginterface_pointer , variables_pointer , a
responses_pointer ; seeMethod Independent Controls). Since
nondeterministic iteration use very different types of data, the va
responses specifications used by these methods will often be di
summarizes theopt_under_uncertainty strategy inputs.

Refer toOptimization Under Uncertainty for an overview of the
opt_under_uncertainty objects and algorithm logic.

Table 32 Specification detail for opt_under_uncertainty strateg

Description Specification Sample Status Default

Optimization
under uncertainty
strategy

({opt_under_un
certainty} ...)

opt_under_un
certainty

Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method =
‘NLP1’

Required N/A

Nondeterministic
method

{nond_method=
<STRING>}

nond_method
= ‘LHS_MC’

Required N/A

DAK mmands 261

D
C

S

D

In

C

t_method and
. The method

 to the variables,
ethod (using

pointer ; see
nd_bound

nd objects and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Strategy Commands - Branch and Bound Co

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Strategy
ommands

Draft Version

Branch and Bound Commands

Thebranch_and_bound strategy must specify an iterator usingop
the number of concurrent iterator servers usingiterator_servers
specification identified byopt_method is responsible for pointing
interface, and responses specifications that will be used by the m
interface_pointer , variables_pointer , andresponses_
Method Independent Controls). Table 33 summarizes thebranch_a
strategy inputs.

Refer toBranch and Bound for an overview of thebranch_and_bou
algorithm logic.

Table 33 Specification detail for branch_and_bound strategies

Description Specification Sample Status Default

Branch and
bound
strategy

({branch_and_bou
nd} ...)

branch_and_boun
d

Required
group

N/A

Optimization
method

{opt_method =
<STRING>}

opt_method =
‘NLP1’

Required N/A

Concurrent
iterator
servers

{iterator_servers =
<INTEGER>}

iterator_servers =
4

Required N/A

DAKOTA User’s Instruct 262

SEACAS
Library

DAKOTA
Manuals

User’s
Instructions

ds

DAKOTA
Commands

Co
Int

i Blue text
indicates

a link to more
information.

De

Sp

Me

DO

NP

OP

SG

No

Pa
ions (6/11/99) DAKOTA Commands - Method Commands

Responses
Commands

Method
Comman

Variables
Commands

mmands
roduction

Interface
Commands

Strategy
Commands

Draft Version

Method Commands

scription

ecification

thod Independent Controls

T Methods

SOL Method

T++ Methods

OPT Methods

ndeterministic Methods
Monte Carlo Probability Method
Mean Value Method

rameter Study Methods
Vector Parameter Study
List Parameter Study
Centered Parameter Study
Multidimensional Parameter Study

DAK 263

D
C

S

D

In

C

d controls of an iterator.
although method usually
 an object within the

select an iterator from
 includes
eter study iterators (see

hes). This iterator may
specification (refer to
apabilities for

 for an optimization

\
\

\
\

he method specification
 a strategy
rategy. Similarly,
en tagged elsewhere with
ations that this method
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Description

The method section in a DAKOTA input file specifies the name an
The terms “method” and “iterator” can be used interchangeably,
refers to an input specification whereas iterator usually refers to
DakotaIterator hierarchy. A method specification, then, is used to
the iterator hierarchy (seeIterator and Strategy Hierarchies), which
optimization, uncertainty quantification, least squares, and param
Capability Overview for more information on these iterator branc
be used alone or with other iterators as dictated by the strategy
Strategy Commands for strategy command syntax and toStrategy C
strategy algorithm descriptions).

Several examples follow. The first example shows a specification
method.

method,
dot_sqp
 id_method = ‘NLP1’
 variables_pointer = ‘V1’
 interface_pointer = ‘I1’ \
 responses_pointer = ‘R1’

This example demonstrates the use of identifiers and pointers. T
has been tagged with the string‘NLP1’ . This string can be used in
specification to identify that this method will be invoked by the st
variables, interface, and responses specifications which have be
‘V1’ , ‘I1’ , and‘R1’ strings are being identified as the specific

DAK 264

D
C

S

D

In

C

ferencing is not needed
 to the presence of only
 least squares method.

\
\

\
\

\

hod dependent controls.
 are method
thods. The
od dependent
e next example shows a

\
\

\
\

\

dent controls. The last
ere, again, each of the

\
\

\

OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Description

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
will use in its iteration. Note that this type of tagging and cross-re
when relationships among specifications are unambiguous (due
one specification). The next example shows a specification for a

method,
optpp_g_newton
 convergence_tolerance = 1.e-8
 max_iterations = 10
 search_method, trust_region
 gradient_tolerance = 1.e-6

This example demonstrates some method independent and met
Theconvergence_tolerance andmax_iterations settings
independent controls, in that they are defined for a variety of me
search_method andgradient_tolerance settings are meth
controls, in that they are only meaningful for OPT++ methods. Th
specification for a nondeterministic iterator.

method,
nond_probability
 observations = 100
 seed = 1
 sample_type, lhs
 response_thresholds = 1000., 500.

Each of the nondeterministic method controls are method depen
example shows a specification for a parameter study iterator wh
controls are method dependent.

method,
parameter_study
 step_vector = 1.,1.,1.
 num_steps = 10

DAK 265

D
C

S

D

In

C

\
\

\

ton,

hich are valid for a
s which may have slightly
 dependent
pecific method or

ndependent
to the method selection
ll required group
ontrols> are
llowing sections provide
 the method selections
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Specification

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Specification

The method specification has the following structure:
method,

<method independent controls>
<method selection>

<method dependent controls>

where<method selection> is one of the following:
dot_frcg, dot_mmfd, dot_bfgs, dot_slp, dot_sqp, npsol_sqp, optpp_cg,
optpp_q_newton, optpp_g_newton, optpp_newton, optpp_fd_newton,
optpp_baq_newton, optpp_ba_newton, optpp_bcq_newton, optpp_bcg_new
optpp_bc_newton, optpp_bc_ellipsoid, optpp_pds, optpp_test_new,
sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps, sgopt_coord_sps,
sgopt_solis_wets, sgopt_strat_mc, nond_probability, nond_mean_value,
vector_parameter_study, list_parameter_study, centered_parameter_study,
multidim_parameter_study

The<method independent controls> are those controls w
variety of methods. In some cases, these controls are abstraction
different implementations from one method to the next. The<method
controls> are those controls which are only meaningful for a s
library. Referring to theIDR Input Specification File, the<method i
controls> are those controls defined externally from and prior
blocks. They are all optional. The method selection blocks are a
specifications separated by logical OR’s. The<method dependent c
those controls defined within the method selection blocks. The fo
additional detail on the method independent controls followed by
and their corresponding method dependent controls.

DAK ontrols 266

D
C

S

D

In

C

ng, pointers to variables,
ection, output verbosity
cification, and maximum

ols is not valid for every
asonable to pull them out
ns.

to provide a unique
te to omit a method

dgle_method is
 is unambiguous in this

es_pointer
ferencing with the

puts from the
e pointers identify which
 of variables into
d no corresponding id is
 specified, the last
ss-referencing whenever
e specification. Since the
interface, variables, and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Method Independent C

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Method Independent Controls

The method independent controls include a method identifier stri
interface, and responses specifications, speculative gradient sel
control, linear constraint specification, convergence tolerance spe
iteration and function evaluation limits. While each of these contr
method, the controls are valid for enough methods that it was re
of the method dependent blocks and consolidate the specificatio

The method identifier string is supplied withid_method and is used
identifier string for use with strategy specifications. It is appropria
identifier string if only one method is included in the input file ansin
the selected strategy, since the binding of a strategy to a method
case.

The interface_pointer , variables_pointer , andrespons
specifications in the method keyword provide strings for cross-re
id_interface , id_variables , andid_responses string in
interface, variables, and responses keyword specifications. Thes
specifications will be used by a particular method for its mapping
responses through an interface. If a pointer string is specified an
available, an error message will be printed. If no pointer string is
specification parsed will be used. It is appropriate to omit this cro
the relationships are unambiguous due to the presence of only on
method specification is responsible for cross-referencing with the

DAK ontrols 267

D
C

S

D

In

C

y layer is often sufficient

 gradients can
en gradient evaluation and
earch phase consists
at a trial point, and then
ction value and/or
 one or more additional
is accepted then the line
ins. By speculating that the
t will be used later,
n asynchronous analysis.
 finite difference or

e trial-point function
formed at each design
hile the total amount of
radients will not be used
e will usually decrease

ization cycle were already
., Schnabel, R.B.,

specification is
L, and OPT++ libraries,
t selections in the
 selected with
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Method Independent C

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
responses specifications, identification of methods at the strateg
to completely specify all of the object interrelationships.

When performing gradient-based optimization in parallel,speculative
be selected to address the load imbalance that can occur betwe
line search phases. In a typical synchronous analysis, the line s
primarily of evaluating the objective function and any constraints
testing the trial point for a sufficient decrease in the objective fun
constraint violation. If a sufficient decrease is not observed, then
trial points may be attempted in series. However, if the trial point
search phase is complete and the gradient evaluation phase beg
gradient information associated with a given line search trial poin
additional coarse grained parallelism can be introduced during a
This is achieved by computing the gradient information, either by
analytically, in parallel, at the same time as the line search phas
values. This balances the total amount of computation to be per
point and allows for efficient utilization of multiple processors. W
work performed will generally increase (since some speculative g
when a trial point is rejected in the line search phase), the run tim
(since gradient evaluations needed at the start of each new optim
performed in parallel during the line search phase). Refer to[Byrd, R.H
and Schultz, G.A., 1988] for additional details. Thespeculative
implemented for the gradient-based optimizers in the DOT, NPSO
and it can be used withdakota numerical or analytic gradien
responses specification (seeGradient specification). It should not be

DAK ontrols 268

D
C

S

D

In

C

nce algorithms have
he Hessian is also

rverbose or
volume of data that is
terators implement this
ent.

ints list
 support specialized
pports this feature. For

the more general
unction evaluation.
r’s interface on every
ts can be provided to
s internally. Note that
iables, e.g.:

is a nonlinear implicit
, the specification would
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Method Independent C

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
vendor numerical gradients since vendor internal finite differe
not been modified for this purpose. In full-Newton approaches, t
computed speculatively.

Output verbosity control is specified withoutput followed by eithe
quiet . This control is mapped into each iterator to manage the
returned to the user during the course of the iteration. Different i
control in slightly different ways, however the meaning is consist

Linear constraint coefficients can be supplied with thelinear_constra
specification. While many of DAKOTA’s optimizers will eventually
handling of linear constraints, currently only the NPSOL library su
all other optimizers, linear constraints should be included within
num_nonlinear_constraints count and returned on every f
For NPSOL, linear constraints need not be computed by the use
function evaluation; rather the coefficients of the linear constrain
NPSOL at startup, allowing NPSOL to track the linear constraint
linear constraints are those constraints that are linear in thedesign var

3x 1 - 4x 2 ≤ 0.5
x1 + x 2 ≥ 2.0

which is not to be confused with something like
σ(X) - σfail ≤ 0

which is linear in a response quantity, but the response quantity
function of the design variables. For the linear constraints above
appear as:

linear_constraints = 3.0, -4.0, -0.5, -1.0, -1.0, 2.0

DAK ontrols 269

D
C

S

D

In

C

number of continuous
hich was selected for

lue for controlling the
e tolerance for the
ween successive
he amount specified by
atisfied on the current
d by significant progress
_tolerance
ation of iteration. This
ators and is not currently
 study iterator branches.

or the specific

imum allowable value
possess at termination.
ater than this value then
pecification gives some
rgence of the algorithm.
e with one or more
gful for the NPSOL and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Method Independent C

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
where the list in divided into individual constraints based on the
design variables and according to the following assumed form (w
consistency with the nonlinear constraint assumed form of gi(X) ≤ 0):

a1x1 + a 2x2 + ... + a nxn + a 0 ≤ 0

Theconvergence_tolerance specification provides a real va
termination of iteration. In most cases, it is a relative convergenc
objective function; i.e., if the change in the objective function bet
iterations divided by the previous objective function is less than t
convergence_tolerance , then this convergence criterion is s
iteration. Since no progress may be made on one iteration followe
on a subsequent iteration, some libraries require that theconvergence
be satisfied on two or more consecutive iterations prior to termin
control is most meaningful for optimization and least squares iter
implemented within the uncertainty quantification and parameter
Refer to the DOT, NPSOL, OPT++, and SGOPT specifications f
interpretation ofconvergence_tolerance for these libraries.

Theconstraint_tolerance specification determines the max
of infeasibility that any constraint in an optimization problem may
It is specified as a positive real value. If a constraint function is gre
it is considered to be violated by the optimization algorithm. This s
control over how tightly the constraints may be satisfied at conve
However, if the value is set too small the algorithm may terminat
constraints being violated. This specification is currently meanin
DOT constrained optimizers.

DAK ontrols 270

D
C

S

D

In

C

trols provide
m number of function
d a function evaluation is
e mapping through an
putation within the
aluations (e.g., for
optimization, population

n, etc.). This control is
nd parameter study
res, does not currently
 dakota finite
nally isolated from the

od independent controls.

rols
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Method Independent C

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
Themax_iterations andmax_function_evaluations con
integer limits for the maximum number of iterations and maximu
evaluations, respectively. The difference between an iteration an
that a function evaluation involves a single parameter to respons
interface, whereas an iteration involves a complete cycle of com
iterator. Thus, an iteration generally involves multiple function ev
descent direction and line search computations in gradient-based
and multiple offset evaluations in nongradient-based optimizatio
not currently implemented within the uncertainty quantification a
iterator branches, and in the case of optimization and least squa
capture function evaluations that occur as part of themethod_source
difference routine (since these additional evaluations are intentio
iterators). Table 34 provides the specification detail for the meth

Table 34 Specification detail for the method independent cont

Descriptio
n

Specification Sample Status Default

Method set
identifier

[id_method =
<STRING>]

id_method =
‘NLP1’

Optional strategy
usage of last
method
parsed

Interface
pointer

[interface_pointe
r = <STRING>]

interface_point
er = ‘I1’

Optional method
usage of last
interface
parsed

DAK ontrols 271

D
C

S

D

In

C

rols
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Method Independent C

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Variables
pointer

[variables_point
er =
<STRING>]

variables_poin
ter = ‘V1’

Optional method
usage of last
variables
parsed

Responses
pointer

[responses_point
er =
<STRING>]

responses_poi
nter = ‘R1’

Optional method
usage of last
responses
parsed

Speculative
gradients
and
Hessians

[speculative] speculative Optional standard
gradients
and
Hessians

Output
verbosity

[{output}
{verbose} |
{quiet}]

output verbose Optional
group

quiet

Linear
constraints

[linear_constrain
ts = <LISTof>
<REAL>]

linear_constrai
nts = 1.0, 2.0,
3.0

Optional no linear
constraints

Constraint
tolerance

[constraint_
tolerance =
<REAL>

constraint_
tolerance =
1.e-4

Optional Optimizatio
n code
dependent

Convergen
ce
tolerance

[convergence_
tolerance =
<REAL>]

convergence_
tolerance =
1.e-5

Optional 1.e-4

Maximum
iterations

[max_iterations
= <INTEGER>]

max_iterations
= 10

Optional 100

Table 34 Specification detail for the method independent cont

Descriptio
n

Specification Sample Status Default

DAK ontrols 272

D
C

S

D

In

C

 are defined in Dakota/src/

rols
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Method Independent C

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Developer’s notes: defaults for method independent and method dependent controls
DataMethod.C.

Maximum
function
evaluations

[max_function_
evaluations =
<INTEGER>]

max_function_
evaluations
=200

Optional 1000

Table 34 Specification detail for the method independent cont

Descriptio
n

Specification Sample Status Default

DAK 273

D
C

S

D

In

C

]ontains nonlinear
farb-Shanno (Dakota’s
akota’sdot_frcg
ed method of feasible
mming (Dakota’s
ta’sot_sqp method)

DOT library within the

ions and the number
mization. The
 on relative change in
nce criterion must be
. The
traint functions are to
ed optimizers is0.003 .
 attainable. The
n generated by DOT:
 objective function,
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - DOT Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

DOT Methods

The DOT library[Vanderplaats Research and Development, 1995 c
programming optimizers, specifically the Broyden-Fletcher-Gold
dot_bfgs method) and Fletcher-Reeves conjugate gradient (D
method) methods for unconstrained optimization, and the modifi
directions (Dakota’sdot_mmfd method), sequential linear progra
dot_slp method), and sequential quadratic programming (Dakod
methods for constrained optimization. DAKOTA implements the
DOTOptimizer class.

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major iterat
of function evaluations that can be performed during a DOT opti
convergence_tolerance control defines the threshold value
the objective function that indicates convergence. This converge
satisfied for two consecutive iterations before DOT will terminate
constraint_tolerance specification defines how tightly cons
be satisfied at convergence. The default value for DOT constrain
Extremely small values forconstraint_tolerance may not be
output verbosity specification controls the amount of informatio
thequiet setting results in header information, final results, and

DAK 274

D
C

S

D

In

C

s therbose setting
mensional search results,
ms which can directly
radients
s interface
 the finite difference
gradients (dakota
e search evaluation in

optimization studies.
orted with DOT;
traints

etail for these method

ce_tolerance , and
is mapped into DOT’s

nted directly in the
gence_tolerance
itsPRMarray; andoutput
list (verbose:IPRINT = 7;
mation onIPRM, RPRM,

ich may be either
OTA which provide
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - DOT Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
constraint, and parameter information on each iteration; whereave
adds additional information on gradients, search direction, one-di
and parameter scaling factors. DOT contains no parallel algorith
take advantage of asynchronous evaluations. However, ifnumerical_g
with method_source dakota is specified, then anasynchronou
specification will trigger the use of asynchronous evaluations for
function evaluations. In addition, ifspeculative is specified, then
numerical or analytic gradients) will be computed on each lin
order to balance the load and lower the total run time in parallel
Lastly, specialized handling oflinear_constraints is not supp
linear constraints should be included within thenum_nonlinear_cons
count and returned on every function evaluation. Specification d
independent controls is provided in Table 34.

Developer’s notes:max_iterations , max_function_evaluations , convergen
output verbosity are implemented withinDOTOptimizer as follows:max_iterations
ITMAX parameter within itsIPRM array;max_function_evaluations is impleme
DOTOptimizer::find_optimum loop since there is no DOT parameter equivalent;conver
is mapped into DOT’sDELOBJparameter (the relative convergence tolerance) withinR
verbosity is mapped into DOT’sIPRINT parameter within its function call parameter
quiet:IPRINT = 3). Refer to[Vanderplaats Research and Development, 1995]for infor
and the DOT function call parameter list.

Method dependent controls

DOT’s only method dependent control isoptimization_type wh
minimize or maximize . DOT has the only methods within DAK

DAK 275

D
C

S

D

In

C

tion formulation
ive function (i.e., multiply
thods and their method

ithin its function call
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - DOT Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
this control; to convert a maximization problem into the minimiza
assumed by other methods, simply change the sign on the object
by -1). Table 35 provides the specification detail for the DOT me
dependent controls.

Developer’s notes:optimization_type is mapped into DOT’sMINMAX parameter w
parameter list.

Table 35 Specification detail for the DOT methods

Description Specification Sample Status Default

DOT method ({dot_bfgs} ...) |
({dot_frcg} ...) |
({dot_mmfd} ...)
| ({dot_slp} ...) |
({dot_sqp} ...)

dot_sqp Required
group

N/A

Optimization
type

[{optimization_ty
pe} {minimize} |
{maximize}]

optimization_
type,
minimize

Optional
group

minimize

DAK 276

D
C

S

D

In

C

ight, M.H., 1986]
tion (thenpsol_sqp

ined minimization.
r class.

 iterations and the
 NPSOL optimization.
l optimality tolerance
n-Tucker conditions for
imately specifies
bjective function (e.g.,
ely six digits of

 control
gence. The default value
 but is typically on the
all values for
rbosity setting

 iteration: thequiet
r iteration and prints the
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - NPSOL Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

NPSOL Method

The NPSOL library[Gill, P.E., Murray, W., Saunders, M.A., and Wr
contains a sequential quadratic programming (SQP) implementa
method). SQP is a nonlinear programming optimizer for constra
DAKOTA implements the NPSOL library within theNPSOLOptimize

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major SQP
number of function evaluations that can be performed during an
Theconvergence_tolerance control defines NPSOL’s interna
which is used in evaluating if an iterate satisfies the first-order Kuh
a minimum. The magnitude ofconvergence_tolerance approx
the number of significant digits of accuracy desired in the final o
convergence_tolerance = 1.e-6 will result in approximat
accuracy in the final objective function). Theconstraint_tolerance
defines how tightly the constraint functions are satisfied at conver
is dependent upon the machine precision of the platform in use,
order of1.e-8 for double precision computations. Extremely sm
constraint_tolerance may not be attainable. Theoutput ve
controls the amount of information generated at each major SQP
setting results in only one line of diagnostic output for each majo

DAK 277

D
C

S

D

In

C

tional information on
teration.

tage of asynchronous
urce dakota
the use of
ations. An important
 searches depending on

OL is placed in
o 3) and it uses a
e user-supplied gradients
e selected with
rences internally and
es that finite differencing
ns of this are: (1)
hod_source
ion is unnecessary
d line search in user-
cessor execution.
L, and optimization

or load balanced
l operation.

ts with the
fficients of the linear
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - NPSOL Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
final optimization solution, whereas theverbose setting adds addi
the objective function, constraints, and variables at each major i

NPSOL is not a parallel algorithm and cannot directly take advan
evaluations. However, ifnumerical_gradients with method_so
is specified, anasynchronous interface specification will trigger
asynchronous evaluations for the finite difference function evalu
related observation is the fact that NPSOL uses two different line
how gradients are computed. For eitheranalytic_gradients or
numerical_gradients with method_source dakota , NPS
user-supplied gradient mode (NPSOL’s “Derivative Level” is set t
gradient-based line search (presumably since it assumes that th
are inexpensive). On the other hand, ifnumerical_gradients ar
method_source vendor , then NPSOL is computing finite diffe
it will use a value-based line search (presumably since it assum
on each line search evaluation is too expensive). The ramificatio
performance will vary betweenmethod_source dakota andmet
vendor for numerical_gradients , and (2) gradient speculat
when performing optimization in parallel since the gradient-base
supplied gradient mode is already load balanced for multiple pro
Therefore, aspeculative specification will be ignored by NPSO
with numerical gradients should selectmethod_source dakota f
parallel operation andmethod_source vendor for efficient seria

Lastly, NPSOL supports specialized handling of linear constrain
linear_constraints list specification. By specifying the coe

DAK 278

D
C

S

D

In

C

zation and tracked
the linear constraints on
r additional
cification detail.

ce_tolerance , and
s is mapped into

ator functions since there
OL’s“Optimality
 NPSOL’s“Major

 = 20;quiet :
right, M.H., 1986] for

precision ,
ructs NPSOL to
omponents. The
the accuracy to which

 NPSOL from trying to
herent error in the
e accuracy of the
ccurately NPSOL will
n. Table 36 provides the

dependent controls.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - NPSOL Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
constraints, this information can be provided to NPSOL at initiali
internally, removing the need for the user to provide the values of
every function evaluation. Refer toMethod Independent Controls fo
information and to Table 34 for method independent control spe

Developer’s notes:max_iterations , max_function_evaluations , convergen
output verbosity are implemented withinNPSOLOptimizer as follows:max_iteration
NPSOL’s“Major Iteration Limit” parameter using itsNPOPTN routine;
max_function_evaluations is implemented directly inNPSOLOptimizer’s evalu
is no NPSOL parameter equivalent;convergence_tolerance is mapped into NPS
Tolerance” parameter using the NPOPTN routine;output verbosity is mapped into
Print Level” parameter using the NPOPTN routine (verbose : Major Print Level
Major Print Level = 10). Refer to[Gill, P.E., Murray, W., Saunders, M.A., and W
information on NPSOL’s optional input parameters and the NPOPTN subroutine.

Method dependent controls

NPSOL’s method dependent controls areverify_level , function_
andlinesearch_tolerance . Theverify_level control inst
perform finite difference verifications on user-supplied gradient c
function_precision control provides NPSOL an estimate of
the problem functions can be computed. This is used to prevent
distinguish between function values that differ by less than the in
calculation. And thelinesearch_tolerance setting controls th
line search. The smaller the value (between 0 and 1), the more a
attempt to compute a precise minimum along the search directio
specification detail for the NPSOL SQP method and its method

DAK 279

D
C

S

D

In

C

nce are mapped
rance”
., Saunders, M.A., and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - NPSOL Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Developer’s notes:verify_level , function_precision , andlinesearch_tolera
into NPSOL’s“Verify Level” , “Function Precision” and“Linesearch Tole
parameters, respectively, using NPSOL’sNPOPTNroutine. Refer to[Gill, P.E., Murray, W
Wright, M.H., 1986] for additional information on these controls.

Table 36 Specification detail for the NPSOL SQP method

Description Specification Sample Status Default

NPSOL’s
SQP method

({npsol_sqp} ...) npsol_sqp Required
group

N/A

Verify level [verify_level =
<INTEGER>]

verify_level
= -1

Optional -1 (no gradient
verification)

Function
precision

[function_precisi
on = <REAL>]

function_pre
cision = 1.e-6

Optional 1.e-10

Line search
tolerance

[linesearch_toler
ance = <REAL>]

linesearch_to
lerance = 0.4

Optional 0.9 (inaccurate
line search)

DAK 280

D
C

S

D

In

C

 programming
te gradient (DAKOTA’s
n, and bound
aq_newton ,
constrained Gauss-

methods - part of
nction full Newton, and
ba_newton ,

KOTA’s
DAKOTA’s
cted search algorithm,
n input place holder

 DAKOTA
re “SNLL” denotes

ions and the number
optimization. The
 on relative change in
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - OPT++ Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

OPT++ Methods

The OPT++ library[Meza, J.C., 1994] contains primarily nonlinear
optimizers for unconstrained minimization: Polak-Ribiere conjuga
optpp_cg method), quasi-Newton, barrier function quasi-Newto
constrained quasi-Newton (DAKOTA’soptpp_q_newton , optpp_b
andoptpp_bcq_newton methods), Gauss-Newton and bound
Newton (DAKOTA’soptpp_g_newton andoptpp_bcg_newton
DAKOTA’s nonlinear least squares branch), full Newton, barrier fu
bound constrained full Newton (DAKOTA’soptpp_newton , optpp_
andoptpp_bc_newton methods), finite difference Newton (DA
optpp_fd_newton method), and bound constrained ellipsoid (
optpp_bc_ellipsoid method). The library also contains a dire
PDS (parallel direct search, DAKOTA’soptpp_pds method), and a
for new algorithm testing (DAKOTA’soptpp_test_new method).
implements the OPT++ library within theSNLLOptimizer class, whe
Sandia National Laboratories - Livermore.

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major iterat
of function evaluations that can be performed during an OPT++
convergence_tolerance control defines the threshold value

DAK 281

D
C

S

D

In

C

sity specification
etting corresponds
etting turns debug
ithms and cannot directly
radients
nterface
 the finite difference
d can directly exploit
 implemented within

n of Hessian and/or
ses. The specification is
ereust_region or
e OPT++Method

 and
be used in
e specification is
ions when a
_newton ,
sed. The speculative
ich require computation
d. However, the
ation, which
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - OPT++ Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
the objective function that indicates convergence. Theoutput verbo
controls the amount of information generated by OPT++: thequiet s
to turning OPT++’s internal debug mode off, whereas theverbose s
mode on. OPT++’s gradient-based methods are not parallel algor
take advantage of asynchronous evaluations. However, ifnumerical_g
with method_source dakota is specified, anasynchronous i
specification will trigger the use of asynchronous evaluations for
gradient computations. OPT++’s nongradient-based PDS metho
asynchronous evaluations; however, this capability has not been
DAKOTA V1.1.

Thespeculative specification enables speculative computatio
gradient information, where applicable, for load balancing purpo
applicable to the computation of gradient information in cases whtr
value_based_line_search methods can be applied. See th
dependent controls for a description ofvalue_based_line_search
trust_region methods. Thespeculative specification must
conjunction withdakota numerical or analytic gradients. Th
ignored and a warning message is printed for gradient computat
gradient_based_line_search is used, or when theoptpp_ba
optpp_baq_newton or optpp_bc_ellipsoid methods are u
specification can also be applied to the full Newton methods, wh
of analytic hessians, or for theoptpp_fd_newton metho
specification is ignored for theoptpp_g_newton Hessian comput
approximates the Hessian from function and gradient values.

DAK 282

D
C

S

D

In

C

orted with OPT++;
ndle bound constraints.
vided in Table 34.

_evaluations ,
, andSetFcnTol
ode using theSetDebug

/VendorOptimizers/opt++

nce ,
. The

n when computing a
 step computed from
ove limit or a maximum

hreshold value on the
nce to an unconstrained
control is defined

timizers and is used to
and

 is applicable
hetrust_region
rrier, and bound-
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - OPT++ Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
Lastly, specialized handling oflinear_constraints is not supp
many OPT++ methods must be unconstrained and some can ha
Specification detail for these method independent controls is pro

Developer’s notes:within theSNLLOptimizer class,max_iterations , max_function
andconvergence_tolerance are set using OPT++’sSetMaxIter , SetMaxFeval
member functions, respectively;output verbosity is used to toggle OPT++’s debug m
member function. Refer to[Meza, J.C., 1994] and to the OPT++ source in the Dakota
directory for information on OPT++ class member functions.

Method dependent controls

OPT++’s method dependent controls aremax_step , gradient_tolera
search_method , initial_radius , andsearch_scheme_size
max_step control specifies the maximum step that can be take
change in the objective function iterate (e.g., limiting the Newton
current gradient and Hessian information). It is equivalent to a m
trust region size. Thegradient_tolerance control defines the t
L2 norm of the objective function gradient that indicates converge
minimum (no active bound constraints). Thegradient_tolerance
for all gradient-based optimizers.

Thesearch_method control is defined for all Newton-based op
select betweentrust_region, gradient_based_line_search,
value_based_line_search methods. Themax_step control
wherever one of the abovesearch_method techniques is used. T
search method is the default for all methods except ellipsoid, ba

DAK 283

D
C

S

D

In

C

lt-in directional searches,
 use of trust region
ch issue, and currently the
ol is defined for the

y the number of points
template.

rovide the specification
rols. Table 37 covers the
es the detail for all of the
able 39 provides the detail
bound constrained
ct search method. And

d testing.

t method
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - OPT++ Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
constrained methods. The ellipsoid and barrier methods use bui
and thus, the overallsearch_method control does not apply. The
techniques for the bound-constrained methods is an open resear
line_search method is the default. Theinitial_radius contr
ellipsoid method to specify the initial radius of the ellipsoid, and
search_scheme_size is defined for the PDS method to specif
tospeculative gradient specification be used in the direct search

Table 37, Table 38, Table 39, Table 40, Table 41, and Table 42 p
detail for the OPT++ methods and their method dependent cont
OPT++ conjugate gradient method specification. Table 38 provid
unconstrained and bound-constrained Newton-based methods. T
for barrier Newton methods. Table 40 provides the detail for the
ellipsoid method. Table 41 provides the detail for the parallel dire
Table 42 provides the specification detail for OPT++ new metho

Table 37 Specification detail for the OPT++ conjugate gradien

Description Specification Sample Status Default

OPT++’s
conjugate
gradient
method

({optpp_cg} ...) optpp_cg Required
group

N/A

Maximum
step size

[max_step =
<REAL>]

max_step = 1000. Optional 1000.

Gradient
tolerance

[gradient_toleran
ce = <REAL>]

gradient_tolerance
= 0.0001

Optional 0.0001

DAK 284

D
C

S

D

In

C

strained
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - OPT++ Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Table 38 Specification detail for unconstrained and bound-con
Newton-based OPT++ methods

Description Specification Sample Status Default

OPT++
Newton-
based
methods

({optpp_q_newton} ...) |
({optpp_g_newton} ...) |
({optpp_newton} ...) |
({optpp_fd_newton} ...) |
({optpp_bc_newton} ...) | (
{optpp_bcq_newton} ...) | (
{optpp_bcg_newton} ...)

optpp_q_
newton

Required
group

N/A

Search
method

[{search_method}
{value_based_line_search}|
{gradient_based_line_searh}|
{trust_region}]

search_m
ethod,
value_ba
sed_line_
search

Optional
group

line_sear
ch for bc
methods,
trust_regi
on for
others

Maximum
step size

[max_step = <REAL>] max_step
= 1000.0

Optional 1000.

Gradient
tolerance

[gradient_tolerance =
<REAL>]

gradient_
tolerance
= 0.0001

Optional 0.0001

DAK 285

D
C

S

D

In

C

PT++

d ellipsoid
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - OPT++ Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Table 39 Specification detail for barrier-constrained Newton O
methods

Description Specification Sample Status Default

OPT++
barrier
Newton
methods

({optpp_ba_newton} ...) | (
{optpp_baq_newton} ...)

optpp_ba
_newton

Required
group

N/A

Gradient
tolerance

[gradient_tolerance =
<REAL>]

gradient_
tolerance
= 0.0001

Optional 0.0001

Table 40 Specification detail for the OPT++ bound constraine
method

Description Specification Sample Status Default

OPT++’s
bound
constrained
ellipsoid

({optpp_bc_ellipsoid}
...)

optpp_bc_elli
psoid

Required
group

N/A

Initial
radius

[initial_radius =
<REAL>]

initial_radius
= 1000.0

Optional 1000.

Maximum
step size

[max_step =
<REAL>]

max_step =
1000.

Optional 1000.

Gradient
tolerance

[gradient_tolerance =
<REAL>]

gradient_toler
ance = 0.0001

Optional 0.0001

DAK 286

D
C

S

D

In

C

adius , and
rchStrategy ,

a, J.C., 1994] and to the
PT++ class member functions.
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - OPT++ Methods

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Developer’s notes: max_step , gradient_tolerance , search_method , initial_r
search_scheme_size are set using OPT++’sSetMaxStep , SetGradTol , SetSea
SetInitialEllipsoid , andSetSSS member functions, respectively. Refer to[Mez
OPT++ source in the Dakota/VendorOptimizers/opt++ directory for information on O

Table 41 Specification detail for the OPT++ PDS method

Description Specification Sample Status Default

OPT++’s
Parallel
Direct Search

({optpp_pds} ...) optpp_pds Required
group

N/A

Search
scheme size

[search_scheme_si
ze = <INTEGER>]

search_scheme
_size = 32

Optional 32

Table 42 Specification detail for OPT++ new method testing

Description Specification Sample Status Default

Placeholder for
new OPT++
method testing

{optpp_test_new} optpp_test_
new

Required N/A

DAK s 287

D
C

S

D

In

C

97] contains a
ochastic methods.
ods: genetic algorithms
lo
ulated annealing, tabu
led
velopment but are not
l local search
nistic and stochastic
s). DAKOTA

r class instantiates
izer class). The purpose

r programs (e.g., DAKOTA) to
of string data using theprocess

edebug data structure

ions and the number

OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

SGOPT Methods

The SGOPT (Stochastic Global OPTimization) library[Hart, W.E., 19
variety of global optimization algorithms, with an emphasis on st
SGOPT currently includes the following global optimization meth
(sgopt_pga_real , sgopt_pga_int) and stratified Monte Car
(sgopt_strat_mc). Evolutionary pattern search algorithms, sim
search, and multistart local search (to become part of DAKOTA’scoup
multi_level strategy) are global methods which are under de
available in DAKOTA V1.0. Additionally, SGOPT includes severa
algorithms such as Solis-Wets (sgopt_solis_wets) and determi
coordinate pattern search (sgopt_coord_ps andsgopt_coord_sp
implements the SGOPT library within theSGOPTOptimizer class.

Developer’s notes: To specify method controls and options, DAKOTA’sSGOPTOptimize
SGOPT method interface objects (e.g.,IPGAreal is an interface class to thePGAreal optim
of these interface classes is to simplify the communication of information from drive
the SGOPT optimizer classes. This information transfer occurs through the passing
member function available in the interface classes. For example, the command

baseOptimizerInterface->process(“debug”, “5”);
uses a pointer to an optimizer interface object (baseOptimizerInterface) to set th
within the interface object’s corresponding optimizer class to the integer 5.

Method independent controls

The method independent controls formax_iterations and
max_function_evaluations limit the number of major iterat

DAK s 288

D
C

S

D

In

C

 optimization. The
 on relative change in
sity specification
etting corresponds

 which improvement in
s to a higher level of
adient-based methods
antage of DAKOTA’s
current function
c ,
matically utilize
pecifying an
ps or

 (see
est_first , and
 for the case of serial
 handling of
PT methods are
ethod independent

ce_tolerance , and
s is mapped into
s interface classes;
ence_tolerance is
_debug settings using
uiet : thedebug level
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
of function evaluations that can be performed during an SGOPT
convergence_tolerance control defines the threshold value
the objective function that indicates convergence. Theoutput verbo
controls the amount of information generated by SGOPT: thequiet s
to a low level of diagnostics reported only on those iterations for
the objective is observed, whereas theverbose setting correspond
diagnostics reported on every iteration. Many of SGOPT’s nongr
have independent function evaluations that can directly take adv
parallel capabilities. The following methods currently support con
evaluations:sgopt_pga_real , sgopt_pga_int , sgopt_strat_m
sgopt_coord_ps , andsgopt_coord_sps . This methods auto
asynchronous logic when utilizing multiple processors of when s
asynchronous interface. Note that parallel usage ofsgopt_coord_
sgopt_coord_sps overrides any setting forexploratory_moves
Coordinate pattern search (CPS)), since thestandard , offset , b
biased_best_first settings only involve relevant distinctions
operation. Lastly, neitherspeculative gradients nor specialized
linear_constraints are supported with SGOPT since SGO
unconstrained and nongradient-based. Specification detail for m
controls is provided in Table 34.

Developer’s notes:max_iterations , max_function_evaluations , convergen
output verbosity are implemented withinSGOPTOptimizer as follows:max_iteration
SGOPT’smax_iters data attribute using theprocess command available in SGOPT’
max_function_evaluations is mapped intomax_neval usingprocess; converg
mapped intoftol usingprocess; output verbosity is mapped intodebug anddynamic
process(verbose : thedebug level is set to 5 and thedynamic_debug flag is not set;q

DAK s 289

D
C

S

D

In

C

mines whether results are
the objective is observed (on).
dependent evaluations which can
nous control is
us coordinate pattern
trol whether or not an

 to W.E., 1997] for

nt controls which are
vergence criterion in
value lower than the
ridden in those
ximum CPU time setting
nate if its CPU usage in
ification detail for these

ontrols
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
is set to 0 and thedynamic_debug flag is turned on). Thedynamic_debug flag deter
reported on every iteration (off) or only on those iterations for which improvement in
SGOPT methods assume asynchronous operations whenever the algorithm has in
be performed simultaneously (implicit parallelism). Therefore, theevaluations asynchro
not mapped into the method (exception:emcase is set to 3 usingprocess for asynchrono
searches), rather it is used inSGOPTRealApplication andSGOPTIntApplication to con
asynchronous evaluation request from the method is honored by the model. Refer[Hart,
additional information on SGOPT objects and controls.

Method dependent controls

solution_accuracy andmax_cpu_time are method depende
defined for all SGOPT methods. Solution accuracy defines a con
which the optimizer will terminate if it finds an objective function
specified accuracy. Note that the default of 1.e-5 should be over
applications where it could cause premature termination. The ma
is another convergence criterion in which the optimizer will termi
seconds exceeds the specified limit. Table 43 provides the spec
method dependent controls.

Table 43 Specification detail for SGOPT method dependent c

Description Specification Sample Status Default

Solution
Accuracy

[solution_accuracy =
<REAL>]

solution_accuracy =
0.0

Optional 1.e-5

Maximum
CPU Time

[max_cpu_time =
<REAL>]

max_cpu_time =
86400.0

Optional No limit

DAK s 290

D
C

S

D

In

C

PT’s optimizers using

 controls which are
e additional settings for
 crossover, and mutation.
r random seed (stochastic
fore expansion, expansion
oratory moves selection.
ccesses before expansion,
o settings. And lastly,

nd parameter space

A
. Most controls for
utation controls have
e controls which are
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
Developer’s notes:solution_accuracy andmax_cpu_time are passed into SGO
process with identifiers ofacc andtime , respectively.

Each SGOPT method supplements the settings of Table 43 with
specific to its particular class of method. Genetic algorithms hav
random seed, population size, selection pressure, replacement,
Coordinate pattern search algorithms have additional settings fo
pattern search only), expansion policy, number of successes be
and contraction exponents, initial and threshold deltas, and expl
Solis-Wets has additional settings for random seed, number of su
number of failures before contraction, and initial and threshold rh
stratified Monte Carlo has additional settings for random seed a
partitioning.

Genetic algorithms (GAs)

DAKOTA currently implements two types of GAs: a real-valued G
(sgopt_pga_real) and an integer-valued GA (sgopt_pga_int)
these two methods are the same, although their crossover and m
slight differences. Table 44 provides the specification detail for th
common between the two GAs.

Table 44 Specification detail for the SGOPT GA methods

Description Specification Sample Status Default

GA
methods

({sgopt_pga_real} ...)
| ({sgopt_pga_int} ...)

sgopt_pga_real Required
group

N/A

DAK s 291

D
C

S

D

In

C

chastic optimization
ithin a genetic algorithm
ntical studies will generate
gful statistics on GA
ultiple runs. The
comprise the GA’s
fferences in fitness
 The

generated individuals
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

The randomseed control provides a mechanism for making a sto
repeatable. For example, even though many of the processes w
have random character, the use of the same random seed in ide
identical results. This, of course, implies that generating meanin
performance will require the user to vary the random seed on m
population_size control specifies how many individuals will
population. Theselection_pressure controls how strongly di
are weighted in the process of selecting “parents” for crossover.
replacement_type controls how current populations and newly
are combined into a new population.

Random
seed

[seed = <INTEGER>] seed = 1 Optional 1

population
size

[population_size =
<INTEGER>]

population_size
= 10

Optional 100

selection
pressure

[{selection_pressure}
{rank = <REAL>} |
{proportional}]

selection_press
ure, rank = 2.0

Optional
group

proport
ional

replacement
type

[{replacement_type}
{random} | {CHC} |
{elitist}
[new_solutions_gener
ated = <INTEGER>]]

replacement_ty
pe elitist,
new_solutions_
generated = 5

Optional
group

???

Table 44 Specification detail for the SGOPT GA methods

Description Specification Sample Status Default

DAK s 292

D
C

S

D

In

C

 which differ between

d mutation

 and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
Table 45 and Table 46 show the crossover and mutation controls
sgopt_pga_real andsgopt_pga_int .

Table 45 Specification detail for SGOPT real GA crossover an

Description Specification Sample Status Default

crossover
type

[{crossover_type}
{two_point} |
{mid_point} |
{blend} | {uniform}
[crossover_rate =
<REAL>]]

crossover_type
mid_point,
crossover_rate
= 0.6

Optional
group

two_point
crossover
with rate
= 0.8

mutation
type

[{mutation_type} (
{normal}
[std_deviation =
<REAL>]) |
{interval} | {cauchy}
[dimension_rate =
<REAL>]
[population_rate =
<REAL>]]

mutation_type
normal,
dimension_rate
= 0.8

Optional
group

???

Table 46 Specification detail for SGOPT integer GA crossover
mutation

Description Specification Sample Status Default

crossover
type

[{crossover_type}
{two_point} |
{uniform}
[crossover_rate =
<REAL>]]

crossover_type
uniform,
crossover_rate
= 0.6

Optional
group

two_point
crossover
with rate
= 0.8

DAK s 293

D
C

S

D

In

C

combining parent
pecifies the
 a new offspring. The
ly modifying design

 controls the
l, and if it is to be
rn the probability of

coord_ps) and
al except that the
he deterministic CPS
or SGOPT CPS methods

 and
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Thecrossover_type controls what approach is employed for
genetic information to create offspring, and thecrossover_rate s
probability of a crossover operation being performed to generate
mutation_type controls what approach is employed in random
variables within the GA population. The associatedpopulation_rate
probability of mutation being performed on a particular individua
performed on an individual, thedimension_rate is used to gove
mutation per design variable for the individual.

Coordinate pattern search (CPS)

DAKOTA implements two types of CPS: a deterministic CPS (sgopt_
a stochastic CPS (sgopt_coord_sps). Their controls are identic
stochastic CPS specification contains a random seed whereas t
specification does not. Table 47 provides the specification detail f
and their method dependent controls.

mutation
type

[{mutation_type}
{offset} | {interval}
[dimension_rate =
<REAL>]
[population_rate =
<REAL>]]

mutation_type
offset,
dimension_rate
= 0.8

Optional
group

???

Table 46 Specification detail for SGOPT integer GA crossover
mutation

Description Specification Sample Status Default

DAK s 294

D
C

S

D

In

C

tic optimizations
 times an increase in
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

As described previously, the randomseed is used to make stochas
repeatable. Theexpansion_policy setting specifies how many

Table 47 Specification detail for the SGOPT CPS methods

Description Specification Sample Status Default

CPS
methods

({sgopt_coord_ps} ...) |
({sgopt_coord_sps} ...)

sgopt_coord
_ps

Required
group

N/A

Random
seed
(stochastic
only)

[seed = <INTEGER>] seed = 1 Optional 1

expansion
policy

[{expansion_policy}
{unlimited} | {once}]

expansion_p
olicy once

Optional
group

unlimited

expand after
success

[expand_after_success =
<INTEGER>]

expand_after
_success = 2

Optional 1

expansion
exponent

[expansion_exponent =
<INTEGER>]

expansion_e
xponent = 1

Optional 0

contraction
exponent

[contraction_exponent =
<INTEGER>]

contraction_
exponent = 1

Optional -1

initial delta {initial_delta =
<REAL>}

initial_delta
= 1.0

Required N/A

threshold
delta

{threshold_delta =
<REAL>}

threshold_de
lta = 1.e-6

Required N/A

exploratory
moves

[{exploratory_moves}
{standard} | {offset} |
{best_first} |
{biased_best_first}]

exploratory_
moves
best_first

Optional
group

standard

DAK s 295

D
C

S

D

In

C

er_success
ments must occur with a
nt and
ate the expansion and
ld_delta
hat will be used prior to
 controls how:

 examines each of
d
er. The offset and

e distinction is only
 either by offset or
t and

s is shuffled in the

oving point found
and selects the best
ell as the parallel

rection where improving

nts are used by the
heordering of the
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
delta can occur (eitheronce or unlimited times). Theexpand_aft
control specifies how many successful objective function improve
specific delta prior to expansion of the delta. Theexpansion_expone
contraction_exponent specify the exponents used to evalu
contraction factors, respectively. Theinitial_delta andthresho
specify the starting delta value and the minimum value of delta t
terminating, respectively. Lastly, theexploratory_moves setting

• the evaluations about a current point are ordered. Theoffset case
the2n offsets in order whereas thestandard , best_first , an
biased_best_first examine each of then dimensions in ord
dimension orderings are identical in the deterministic case; th
relevant for stochastic CPS in which the orderings are shuffled
dimension (the order of then dimensions is shuffled in thebest_firs
biased_best_first cases, and the order of the2n evaluation
offset case).

• whether or not the algorithm immediately selects the first impr
(offset , best_first , andbiased_best_first) or waits
improving point found from all new design points (standard as w
case).

• whether the algorithm uses a bias to guide the algorithm in a di
points have previously been found (biased_best_first).

It is important to emphasize that the same sets of evaluation poi
sgopt_coord_ps andsgopt_coord_sps methods; it is only t

DAK s 296

D
C

S

D

In

C

ase. Consequently, in the
t (since they are being

ps are

ts algorithm. Table 48
ependent controls.

chastic optimizations
ow many successful

d

OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
evaluations that can differ due to the shuffling in the stochastic c
parallel case where the ordering of the evaluations is unimportan
performed simultaneously),sgopt_coord_ps andsgopt_coord_s
essentially identical.

Solis-Wets

DAKOTA’s implementation of SGOPT also contains the Solis-We
provides the specification detail for this method and its method d

As for other SGOPT methods, the randomseed is used to make sto
repeatable. Similar to CPS,expand_after_success specifies h

Table 48 Specification detail for the SGOPT Solis-Wets metho

Description Specification Sample Status Default

Solis-Wets
method

({sgopt_solis_wets}
...)

sgopt_solis_
wets

Required
group

N/A

Random
seed

[seed = <INTEGER>] seed = 1 Optional 1

expand after
success

[expand_after_success
= <INTEGER>]

expand_after
_success = 2

Optional 5

contract
after failure

[contract_after_failure
= <INTEGER>]

contract_after
_failure = 2

Optional 3

initial ρ [initial_rho =
<REAL>]

initial_rho =
1.0

Optional 0.5

thresholdρ [threshold_rho =
<REAL>]

threshold_rho
= 1.e-6

Optional 0.00001

DAK s 297

D
C

S

D

In

C

cycles must occur with
ld_rho
ill be used prior to

 Monte Carlo (sMC)
od and its method

chastic optimizations
r of partitions in each

 2 partitions in the
d 3 partitions in the third
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - SGOPT Method

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
cycles must occur with a specificρ prior to expansion ofρ. And
contract_after_failure specifies how many unsuccessful
a specificρ prior to contraction ofρ. Theinitial_rho andthresho
settings specify the startingρ value and the minimum value ofρ that w
terminating, respectively.

Stratified Monte Carlo

Lastly, DAKOTA’s implementation of SGOPT contains a stratified
algorithm. Table 49 provides the specification detail for this meth
dependent controls.

As for other SGOPT methods, the randomseed is used to make sto
repeatable. And thepartitions list is used to specify the numbe
design variable. For example,partitions = 2, 4, 3 specifies
first design variable, 4 partitions in the second design variable, an
design variable.

Table 49 Specification detail for the SGOPT sMC method

Description Specification Sample Status Default

sMC
method

({sgopt_strat_mc} ...) sgopt_strat_
mc

Required
group

N/A

Random
seed

[seed = <INTEGER>] seed = 1 Optional 1

partitions [partitions = <LISTof>
<INTEGER>]

partitions =
2, 4, 3

Optional No
partitioning

DAK thods 298

D
C

S

D

In

C

 of the method
tions ,
erbosity, or
ocumentation which
 Carlo probability and

bility
eter values within a
s for response functions.

y comparing the response
ts Monte Carlo methods

ns integer
r the random number
. The parameter samples

andom) or with
astly, the
es for comparison
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Nondeterministic Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Nondeterministic Methods

DAKOTA’s nondeterministic branch does not currently make use
independent controls formax_iterations , max_function_evalua
convergence_tolerance , speculative gradients,output v
linear_constraints . As such, the nondeterministic branch d
follows is limited to the method dependent controls for the Monte
mean value methods.

Monte Carlo Probability Method

The Monte Carlo probability iterator is selected using thenond_proba
specification. This iterator performs sampling for different param
specified parameter distribution in order to assess the distribution
Probability of event occurrence (e.g., failure) is then assessed b
results against response thresholds. DAKOTA currently implemen
within theNonDProbability class.

The number of samples to be evaluated is selected with theobservatio
specification. Theseed integer specification specifies the seed fo
generator which is used to make Monte Carlo studies repeatable
can be selected with pure Monte Carlo (by specifyingsample_type r
latin hypercube Monte Carlo (by specifyingsample_type lhs). L
response_thresholds specification supplies a list ofm real valu

DAK thods 299

D
C

S

D

In

C

s the specification detail

ecification. This
tistics based on specified
od and does not perform

ame strings for
 to determine the failure

ethod
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Nondeterministic Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
with them response functions being computed. Table 50 provide
for the Monte Carlo probability method.

Mean Value Method

The mean value method is selected using thenond_mean_value sp
iterator computes approximate response function distribution sta
parameter distributions. The mean value method is a direct meth
any random sampling.

Theresponse_filenames specification supplies a list of file n
response data files which the mean value algorithm will process
probability.

Table 50 Specification detail for the Monte Carlo probability m

Description Specification Sample Status Default

MonteCarlo
probability

({nond_probability}
...)

nond_probabili
ty

Required
group

N/A

observations {observations =
<INTEGER>}

observations =
100

Required N/A

random seed [seed =
<INTEGER>]

seed = 1 Optional 1

sample type {sample_type}
{random} | {lhs}

sample_type,
lhs

Required N/A

response_th
resholds

{response_thresholds
= <LISTof>
<REAL>}

response_thres
holds = 1.0, 2.0

Required N/A

DAK thods 300

D
C

S

D

In

C

ntation are currently
ent item. Table 51
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Nondeterministic Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
The specifics of this computation within the mean value impleme
application-dependent, but generalization is a pending developm
provides the specification detail for the mean value method.

Table 51 Specification detail for the mean value method

Description Specification Sample Status Default

Mean value
method

({nond_mean_value}
...)

nond_mean_va
lue

Required
group

N/A

response
filenames

{response_filenames
= <LISTof>
<STRING>}

response_filena
mes = ‘r1.dat’,
‘r2.dat’

Required N/A

DAK thods 301

D
C

S

D

In

C

at a selection of points in
r, a list, a set of centered
s all of the parameter

of the method
tions ,
erbosity, or
thods is consistent in
ited to the method

sional parameter study

meter studies are
ns focus on the

at selected intervals along
nate parameter studies (to
ple coordinate vector
ensional vector). This
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Parameter Study Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version

Parameter Study Methods

DAKOTA’s parameter study methods compute response data sets
the parameter space. These points may be specified as a vecto
vectors, or an n-dimensional hyper-surface. DAKOTA implement
study methods within theParamStudy class.

DAKOTA’s parameter study methods do not currently make use
independent controls formax_iterations , max_function_evalua
convergence_tolerance , speculative gradients,output v
linear_constraints . Since each of the parameter study me
this way, the parameter study documentation which follows is lim
dependent controls for the vector, list, centered, and multidimen
methods.

Capability overviews and examples of the different types of para
provided inParameter Study Capabilities. The following discussio
details of command specification.

Vector Parameter Study

DAKOTA’s vector parameter study computes response data sets
a vector in parameter space. It encompasses both single-coordi
study the effect of a single variable on a response set) and multi
studies (to investigate the response variations along some n-dim

DAK thods 302

D
C

S

D

In

C

tion followed by

oint
), uniquely defines
art and end points. The

 or a
gth (Cartesian distance)

. The study will
t . In the latter
el_point is
ts at the Initial Values
tions equal to

n Table 52.

er study
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Parameter Study Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
study is selected using thevector_parameter_study specifica
either afinal_point or astep_vector specification.

The vector for the study can be defined in several ways. First, afinal_p
specification, when combined with the Initial Values (seeInitial Values
an n-dimensional vector’s direction and magnitude through its st
intervals along this vector may either be specified with astep_length
num_steps specification. In the former case, steps of equal len
are taken from the Initial Values up to (but not past) thefinal_point
terminate at the last full step which does not go beyond thefinal_poin
num_steps case, the distance between the Initial Values and thfina
broken intonum_steps intervals of equal length. This study star
and ends at thefinal_point , making the total number of simula
num_steps+1 . Thefinal_point specification detail is given i

Table 52 final_point specification detail for the vector paramet

Description Specification Sample Status Default

Vector
parameter
study

(
{vector_parameter_
study} ...)

vector_para
meter_study

Required
group

N/A

Final point
with step
length or
number of
steps

({final_point =
<LISTof><REAL>}
{step_length =
<REAL>} |
{num_steps =
<INTEGER>})

final_point =
1.0,2.0
num_steps =
10

Required
group

N/A

DAK thods 303

D
C

S

D

In

C

r specification.
rements specified in
erformednum_steps
 of simulations is again
 given in Table 53.

e function evaluations

ected points of interest
sing the
of_points

ter study
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Parameter Study Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
The other technique for defining a vector in the study is thestep_vecto
This parameter study starts at the Initial Values and adds the inc
step_vector to obtain new simulation points. This process is p
times, and since the Initial Values are included, the total number
equal tonum_steps+1 . Thestep_vector specification detail is

Refer toVector Parameter Studyfor example specifications and th
that result.

List Parameter Study

DAKOTA’s list parameter study allows for evaluations at user sel
which need not be colinear or coplanar. This study is selected u
list_parameter_study method specification followed by alist_
specification.

Table 53 step_vector specification detail for the vector parame

Description Specification Sample Status Default

Vector
parameter
study

(
{vector_parameter_
study} ...)

vector_param
eter_study

Required
group

N/A

Step vector
and number
of steps

({step_vector =
<LISTof><REAL>}
{num_steps =
<INTEGER>})

step_vector =
1., 1., 1.
num_steps =
10

Required
group

N/A

DAK thods 304

D
C

S

D

In

C

ust be a multiple of
s section. This parameter
firstentries in the list),
ntil the list of points
ey need not be specified.

ould perform
for a set of 2 variables.

ts along multiple vectors,
his is useful for
r individually in the
tion of a minimum). It

cification followed
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Parameter Study Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
The number of real values in thelist_of_points specification m
the total number of continuous variables specified in the variable
study simply performs simulations for the first parameter set (then
followed by the next parameter set (the nextn entries), and so on, u
has been exhausted. Since the Initial Values will not be used, th
The list parameter study specification detail is given in Table 54.

The samplelist_of_points specification shown in Table 54 w
simulations at the 4 corners of a square with edge length of 0.5

Centered Parameter Study

DAKOTA’s centered parameter study computes response data se
one per parameter, centered about the specified Initial Values. T
investigation of function contours with respect to each paramete
vicinity of a specific point (e.g., post-optimality analysis for verifica
is selected using thecentered_parameter_study method spe

Table 54 Specification detail for the list parameter study

Description Specification Sample Status Default

List
parameter
study

(
{list_parameter
_study} ...)

list_parameter_s
tudy

Required
group

N/A

List of
points

{list_of_points
= <LISTof>
<REAL>}

list_of_points =
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.0, 0.5

Required N/A

DAK thods 305

D
C

S

D

In

C

s, where
 and
r variable in each of the
cation detail is given in

d the function

e data sets for an n-
titioned into equally
 combination of the values
tudy is selected using the
y apartitions
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Parameter Study Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
by percent_delta anddeltas_per_variable specification
percent_delta specifies the size of the increments in percent
deltas_per_variable specifies the number of increments pe
plus and minus directions. The centered parameter study specifi
Table 55.

Refer toCentered Parameter Study for example specifications an
evaluations that result.

Multidimensional Parameter Study

DAKOTA’s multidimensional parameter study computes respons
dimensional hypergrid of points. Each continuous variable is par
spaced intervals between its upper and lower bounds, and each
defined by the boundaries of these partitions is evaluated. This s
multidim_parameter_study method specification followed b

Table 55 Specification detail for the centered parameter study

Description Specification Sample Status Default

Centered
parameter
study

(
{centered_parameter
_study} ...)

centered_par
ameter_study

Required
group

N/A

Interval size
in percent

{percent_delta =
<REAL>}

percent_delta
= 1.0

Required N/A

Number of
+/- deltas
per variable

{deltas_per_variable
= <INTEGER>}

deltas_per_va
riable = 5

Required N/A

DAK thods 306

D
C

S

D

In

C

rtitions for each
ions list must be equal to
section. Since the Initial
nsional parameter study

ions and the function

er study
OTA User’s Instructions (6/11/99) DAKOTA Commands - Method Commands - Parameter Study Me

AKOTA
ommands

EACAS
Library

AKOTA
Manuals

User’s
structions

Method
ommands

Draft Version
specification, where the partitions list specifies the number of pa
continuous variable. Therefore, the number of entries in the partit
the total number of continuous variables specified in the variables
Values will not be used, they need not be specified. The multidime
specification detail is given in Table 56.

Refer toMultidimensional Parameter Study for example specificat
evaluations that result.

Table 56 Specification detail for the multidimensional paramet

Description Specification Sample Status Default

Multidimensio
nal parameter
study

(
{multidim_parameter_
study} ...)

multidim_
parameter
_study

Required
group

N/A

Partitions per
variable

{partitions = <LISTof>
<INTEGER>}

partitions
= 4 2 4

Required N/A

SEACAS
Library

DAKOTA Manuals (6/11/99) Main Menu - Configuration Management 307

DAKOTA
Manuals

Configuration
Management

Developer’s
Guide

User’s
Instructions

Example
Problems

Theory
Manual

Draft Version

i Blue text
indicates

a link to more
information.

Configuration Management
Installation Guide

Installation Examples

DAKOTA Manuals (6/11 308

SEACAS
Library

DAKOTA
Manuals

Configuration
Management

Ins
G

i Blue text
indicates

a link to more
information.

Dis

Ba

Co

Ma

Ca
/99) Configuration Management - Installation Guide

Installation
Examples

tallation
uide

Draft Version

Installation Guide

tributions and Checkouts

sic Installation

nfiguration Details
Configuring with specific vendor optimizers
Configuring with the Message Passing Interface

kefile Details

veats
Intel cross-compilation
System modifications

DAK eckouts 309

In

S

D

Co
M

, CD, secure Web site
m (CVS) repository.

 the distribution
stallation directory.

t need to have access to
nymous ftp from a
nu . Next, you

OT environment
.e.,sr/local/
erver capabilities of
248:/usr/
 must specify the
n then be executed to
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Distributions and Ch

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version

Distributions and Checkouts

Installation of DAKOTA can be done from a distribution file (tape
download, etc.) or a checkout from the Concurrent Version Syste

If you are extracting DAKOTA from a distribution file, first extract
(Dakota.tar.gz) from the tape/CD/Web and move it to your in
Then the following steps are performed:

gunzip Dakota.tar.gz
tar xvf Dakota.tar

If you are accessing current files from the CVS repository, you firs
the CVS software on your workstation. You can get CVS via ano
number of sites, for instance,prep.ai.mit.edu in directorypub/g
need to be in thedakota developers’ group and have your$CVSRO
variable set to the repository directory where DAKOTA resides (i/u
eng_sci/CVS). If, in addition, you are using the remote client-s
CVS, then the$CVSROOT variable needs a machine prefix (i.e.,sass2
local/eng_sci/CVS) and the$CVS_RSH environment variable
remote shell program to use (e.g.,rsh , ssh). The following steps ca
check out the repository:

newgrp dakota
cd $HOME
cvs checkout Dakota

DAK n 310

In

S

D

Co
M

 the next step is to

his environment variable
OME/Dakota . If

iple repositories or
/or managed

oftware, which is a C++
, hash tables, etc. If you
ble as part of the C++
or this product and
 for the Rogue Wave
 Rogue Wave software is
olic link from this

atforms, the MPI
dard location for the MPI
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Basic Installatio

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version

Basic Installation

Now that the DAKOTA files have been checked out or extracted,
configure and build the system using the following steps:

1) setenv DAKOTA $HOME/Dakota
2) cd $DAKOTA
3) ln -s <RogueWaveInstallationDir> rogue
4) ln -s <MPI_InstallationDir> mpi
5) configure <config_options>
6) make

Omission of step 1 is a common error; therefore it is wise to set t
in your .cshrc file. Of course,$DAKOTAdoes not have to be set to$H
one wishes a different installation location or is maintaining mult
configurations of DAKOTA code, then$DAKOTA should be set and
accordingly. This is in fact why the$DAKOTA variable exists.

The DAKOTA software relies upon the Rogue Wave Tools.h++ s
utility library for data management with vector classes, linked lists
are compiling on a Sun/Solaris host platform, this may be availa
compiler distribution. If not, you will need to purchase a license f
install it on your workstation. Since there is no standard location
Tools.h++ software, the configure fragment files assume that the
installed in the directory$DAKOTA/rogue . Step 3 creates a symb
directory to the actual Rogue Wave installation directory.

To build DAKOTA with message-passing capability for parallel pl
software must be installed on the target machine. There is no stan

DAK n 311

In

S

D

Co
M

, the configure
mpi. Thus, step 4
llation directory.

y level within the Rogue
e directories.

cific hosts for specific
exists a shell script

ch of the setup activity
ware platforms. Some of

e accessed from one

 other ‘targets’ can be

gured

ntation ($DAKOTA/
and options. Running
ackages and exclusion

uted with themake
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Basic Installatio

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
software (although/usr/local/mpi is common). Consequently
fragment files assume that MPI is located in the directory$DAKOTA/
creates a symbolic link from this directory to the actual MPI insta

In both steps 3 and 4, the symbolic links must point to the director
Wave and MPI distributions which contains thebin , lib , andinclud

In step 5, the DAKOTA software is configured for building on spe
target platforms. In the top-level directory defined by$DAKOTA, there
calledconfigure which is a program designed to automate mu
associated with building large suites of programs on various hard
whatconfigure does:

• makes symbolic links so that files used for configuration can b
location

• generates Makefiles so that objects, libraries, executables and
created for specific and unique hardware platforms

• calls itself recursively so that sub-directories can also be confi

Refer toConfiguration Details and the Cygnus configure docume
docs/configure.ps) for information on configure operations
configure without any options will result in inclusion of all vendor p
of MPI.

In step 6, the Makefiles generated in the configure step are exec
command. Refer toMakefile Details for additional information.

DAK tails 312

In

S

D

Co
M

ich outline the basic
ackage, site or hardware
onfig directory.

sers and code developers
ackage, and/or site

olaris host using the
(seeonfiguring with

sary since available
your Sun workstation is
figure with the

ttype parameter
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Configuration De

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version

Configuration Details

The full parameter list for theconfigure script is below:
configure hosttype [--target=target] [--srcdir=dir] [--rm]

[--site=site] [--prefix=dir] [--exec-prefix=dir]
[--program-prefix=string] [--tmpdir=dir]
[--with-package[=yes/no]] [--without-package]
[--enable-feature[=yes/no]] [--disable-feature]
[--norecursion] [--nfp] [-s] [-v] [-V | - version]
[--help]

Makefiles are custom created fromMakefile.in template files wh
“targets” that can be built for each directory. Variables that are p
dependent are stored in individual “fragment” files in the$DAKOTA/c
These fragment files are added to the custom Makefiles when u
(recursively) configure this repository with specific host, target, p
parameters.

An example configuration command for a native build on a Sun/S
SGOPT, DOT, NPSOL, and OPT++ vendor optimizer packages C
specific vendor optimizers for more info on packages) follows:

configure

NOTE: Thehosttype and--target parameters are not neces
system information can be acquired from your local machine. If
running Solaris 2.5.1, then theconfig.guess script will providecon
triplet ‘sparc-sun-solaris2.5.1 ’. If you wish to supply ahos
for a Sun/Solaris system, ‘sun4sol2 ’ is preferred.

DAK tails 313

In

S

D

Co
M

ill always be displayed
arameter,--silent . If

 to use the option
is parameter as a

enerated in each

ecified (i.e., “sun ”
nd target vendor values.

le.intel files
olaris host for the

er/developer will
ndor}

commands were
stom Makefile to
and.
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Configuration De

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
Runningconfigure takes a while, be patient. Verbose output w
unless the user/developer wishes to silence it by specifying the p
you wish to configure only one level/directory, please remember
--norecursion . All generatedconfig.status files include th
default for easy Makefile regeneration.

After your configure command is completed, three files will be g
configured directory (specified by the fileconfigure.in).

1. Makefile.${target_vendor}

The${target_vendor} suffix will depend on the target sp
for the command above). Native builds have identical host a
If you specified a “--target=tflop ” parameter, thenMakefi
would then be created for a cross-compilation build on the S
Sandia Intel TFLOP (i.e.,janus) target platform.

2. Makefile

This will be a symbolic link to the file mentioned above. A us
simply type “make” and the last generatedMakefile.${target_ve
will then be referenced.

3. config.status

This is a “recording” of the configuration process (i.e., what
executed to generate the Makefile). It can be used by the cu
regenerate the configuration with the “make Makefile ” comm

DAK tails 314

In

S

D

Co
M

 environments.
 on the following

er)

are and examples of
order in which they will
les is controlled by the
CKAGE> or

ition of package source,

efile targets (i.e., CC,
_LIBS, etc.)
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Configuration De

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
Fragment files exist so thatconfigure can support multi-platform
DAKOTA can be configured for code development and execution
platforms :

SPARC-SUN-SOLARIS2.5.1 or higher (i.e., Sun ULTRAsparc)
MIPS-SGI-IRIX6.5 or higher (i.e., SGI Octane)
HPPA1.1-HP-HPUX9.05 or higher (i.e., HP 9000/700 series)
PENTIUM-INTEL-COUGAR or higher (i.e., Intel TFLOP supercomput

Below is a list of the fragment files used for configuring this softw
what dependent information they contain. They are listed in the
appear in the generated Makefiles. Inclusion of these fragment fi
configure.in file and any parameters you specify (i.e.,--with-<PA
--target=<TGT_ALIAS>) with theconfigure command.

• The following files contain package variables for location/defin
include, library, defines, etc.

mp-opt++
mp-npsol
mp-dot-dp
mp-dot-sp
mp-sgopt
mp-stdlib
mp-mpi
mp-bayes
mp-cluster
mp-dakota
mp-idr
mp-twafer

• The following files contain target variables that help build Mak
CCC, AR, LEX, ARCH_DEFINES, ARCH_INCLUDES, ARCH

mt-solaris
mt-irix
mt-hpux
mt-cougar

DAK tails 315

In

S

D

Co
M

nagement of Makefile

ding implicit Makefile
 by default in every
) to configure .

d SGOPT) are
 configure DAKOTA

fy any combination of the
thout-optpp ,

.

eir own individual
rning build
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Configuration De

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
• The following files contain host variables for administration/ma
targets (i.e., AWK, CHMOD, RM, MKDIR, CD, etc.)

mh-solaris
mh-irix
mh-hpux
mh-cougar

• The following file contains site variables and macros for overri
rules when building objects, archives, etc. It is always included
generated Makefile unless overridden by a parameter (--site=...

ms-dakota.std

Configuring with specific vendor optimizers

All of the available vendor optimizers (DOT, NPSOL, OPT++, an
configured for building by default. If the user/developer wishes to
without any of the vendor optimizer packages, he/she must speci
following parameters:--without-dot , --without-npsol , --wi
or --without-sgopt . Some examples follow:

• configure --without-npsol --without-sgopt
Configure and generate Makefiles that construct an executable using
libraries from the DOT and OPT++ optimizers only .

• configure --without-opt++
Configure and generate Makefiles that construct an executable using
libraries from the DOT, NPSOL, and SGOPT optimizers only

Each of the configured vendor optimizer packages will contain th
‘build’ directories. SeeMakefile Details for more information conce
directories and how they manage multi-platform binaries.

DAK tails 316

In

S

D

Co
M

ured into DAKOTA as a
e user wishes to use this
l TFLOP distributed
e user configures for
pi must be

out the use of MPI
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Configuration De

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
Configuring with the Message Passing Interface

The Message Passing Interface (MPI) package will not be config
default unless the user configures for the Intel TFLOP target. If th
message-passing library on parallel platforms other than the Inte
memory supercomputer, then--with-mpi must be specified. If th
the Intel TFLOP target and doesnot wish to use MPI, then--without-m
specified. Refer toMaster-slave algorithm for more information ab
within DAKOTA. Several examples follow:

• configure --target=tflop
Configure and generate Makefiles that construct an executable for the
Intel TFLOP platform using libraries from the DOT, NPSOL, SGOPT, and
OPT++ optimizers and the MPI software package.

• configure --with-mpi
Configure and generate Makefiles that construct an executable on your
native platform (i.e., Solaris) using libraries from the DOT, NPSOL,
SGOPT and OPT++ optimizers and the MPI software package.

• configure --target=tflop --without-mpi --without-sgopt
Configure and generate Makefiles that construct an executable for the
Intel TFLOP platform using libraries from the DOT, NPSOL and OPT++
optimizers only .

DAK ls 317

In

S

D

Co
M

rogram in/usr/
tform, andgmake is
fault can be queried

 can be modified as

o add this$path

 a successful
el$DAKOTA
yconfigure will

). Please note that
naries for a particular
Sun/Solaris host, your
you configured
all be called,

ncies for the source files
les and linking the
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Makefile Detai

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version

Makefile Details

Some versions ofmake fail to build the system properly. Themake p
ccs/bin is preferred to/usr/local/bin/make on the Sun pla
often preferred on other platforms. The version ofmake invoked by de
by executing the command:

which make

If this is not the desiredmake, then the$path environment variable
in the following:

set path = (/usr/ccs/bin $path)

As with the$DAKOTA environment variable, it may be desirable t
addition to the.cshrc file to render the change permanent.

As stated inBasic Installation, building/compiling the system after
configuration entails invoking the command “make” from the top-lev
directory. The latestMakefile.${target_vendor} generated b
be referenced by this command (due to theMakefile symbolic link
build directories are generated to store object/library files and bi
target platform. If you configured DAKOTA for a native build on a
build directories will all be calledsparc-sun-solaris2.5.1 . If
DAKOTA for the Intel TFLOP platform, your build directories will
pentium-intel-cougar .

During an initialmake process, every makefile generates depende
in the makefile’s directory prior to actually compiling the object fi

DAK ls 318

In

S

D

Co
M

 to the bottom of the
 recompiled whenever
ard makefile manages the
endence of source files on
s (e.g., by adding or
an be used to create
d dependency list,
pile only the affected

uild directories by typing
f dependencies. If you
rate all custom
lic links, custom
em must be

d binaries they contain)
or a Sun/Solaris target,
out destroying any
verwritten. Specific
e and specific
, a cleaning
es. However, multiple
rget platform in order
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Makefile Detai

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
libraries and/or executables. These dependencies are appended
makefiles and are used for managing which source files must be
header files are modified. This is needed because, while a stand
dependency of targets on source files, it does not manage the dep
header files. If a developer changes the source file dependencie
removing#include directives), a “make Makefile ” command c
a fresh makefile and then a “make” command will create an update
append the dependency list to the new makefile, and then recom
source modules.

You can remove object files, libraries, and executables from the b
“make clean ”. Theclean target will also cause regeneration o
wish to reconfigure your DAKOTA source from scratch or regene
makefiles, “make distclean ” can be used to remove all symbo
makefiles, andconfig.status files. Once in this state, the syst
reconfigured prior to building.

Each set of target “build” directories (and the object/library files an
is an independent entity. After configuring and building DAKOTA f
you can configure and build for, say, an Intel/TFLOP target, with
previous Sun/Solaris files. Only theMakefile symbolic links are o
target binaries and object/library files get removed with a “clean ” rul
target/build directories get removed with a “distclean ” rule. Thus
operation for one platform will not interfere with other platform fil
“clean ” or “distclean ” executions may be needed for each ta
to completely clean a distribution.

DAK ls 319

In

S

D

Co
M

in the build directory
/
ild directory within

in the$DAKOTA/test
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Makefile Detai

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
After a successful build, the actual “dakota ” executable is located
within $DAKOTA/src (e.g.,$DAKOTA/src/sparc-sun-solaris2.5.1
dakota). In addition, test simulator executables reside in the bu
$DAKOTA/test (e.g.,$DAKOTA/test/sparc-sun-solaris2.5.1/
text_book). Symbolic links to these executables are provided
directory for testing convenience.

DAK 320

In

S

D

Co
M

ougar operating system
e same directory as the

ariable specifying the

akefile ($DAKOTA/
n the source directory,
ifications must be made

clean target in order to

rmine if configure can be
tions to the address
mendations.
OTA Manuals (6/11/99) Configuration Management - Installation Guide - Caveats

stallation
Guide

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version

Caveats

Intel cross-compilation

The InteliCC compilers provided by the Portland Group for the C
require that the object and template instantiation files reside in th
source files for linking of thedakota executable. Therefore, the v
build directory in the dakota source (nominally$DAKOTA/src/
pentium-intel-cougar) must be overridden in the source M
src/Makefile.intel) to ensure that the objects are placed i
rather than a build subdirectory. To perform this override, two mod
to Makefile.intel . Change the line:

DAKOTA_SRC_BUILD = $(DAKOTA_SRC)/$(target_canonical)

to
DAKOTA_SRC_BUILD = $(DAKOTA_SRC)

and then remove or comment out the following line from the dist
prevent removal of the source directory on a “make distclean ”:

$(RM) -r $(DAKOTA_SRC_BUILD)

System modifications

If you need to do unusual things to build this system, please dete
used to accomplish them. Notify us via e-mail by sending instruc
shown below so that a future release can incorporate your recom

Michael S. Eldred, Sandia National Laboratories, mseldre@sandia.gov

DAKOTA Manuals (6/11 321

SEACAS
Library

DAKOTA
Manuals

Configuration
Management

Ins
G

i Blue text
indicates

a link to more
information.

Su
/99) Configuration Management - Installation Examples

tallation
uide

Installation
Examples

Draft Version

Installation Examples

n Solaris platform

DAK atform 322

In
E

S

D

Co
M

Dakota directory will be
mple configuration
ta directory has been

 correct directory for
e Tools.h++ and MPI
OTA Manuals (6/11/99) Configuration Management - Installation Examples - Sun Solaris pl

stallation
xamples

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version

Sun Solaris platform

After checking out the repository or extracting the tape archive, a
present which is ready for configuration and compilation. An exa
performed on the Sandia JAL LAN is supplied in which the Dako
installed at the top level of a user directory.

First, one sets environment variables, changes directories to the
configuring and building, and installs soft links to the Rogue Wav
installation directories, e.g.:

setenv DAKOTA $HOME/Dakota
cd $DAKOTA
ln -s /usr/sharelan/dakota/rogue_wave/rogue rogue
ln -s /usr/local/mpi mpi

From this directory, executing the command
./configure --with-mpi

gives the following output with omissions as marked:
Configuring for a sparc-sun-solaris2.5.1 host.
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota using "config/mh-solaris" and "config/
mt-solaris" and "./config/ms-dakota.std"
Configuring idr...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/idr using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring VendorOptimizers...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring sgopt...
sparc-sun-solaris2.5.1

DAK atform 323

In
E

S

D

Co
M

OTA Manuals (6/11/99) Configuration Management - Installation Examples - Sun Solaris pl

stallation
xamples

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
Host/Target/Site Configuration:
 HOST solaris
 TARGET solaris
 SITE dakota.std
 COMPILER
config/mp-solaris-dakota.std does not exist! Using a default configuration!
Package Configuration:
 MPI no
 TCC no
 GM no
 COBYLA no
 OPTIMIZATION <default>
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/sgopt using "config/
mf-solaris-solaris-dakota.std" and "./config/ms-dakota.std"
<<omission of SGOPT subdirectories>>
Configuring DOT...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/DOT using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring NPSOL...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/NPSOL using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
Configuring opt++...
Linked "config" to "./../../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/VendorOptimizers/opt++ using "config/
mh-solaris" and "config/mt-solaris" and "./config/ms-dakota.std"
<<omission of OPT++ subdirectories>>
Configuring src...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/src using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"
Configuring test...
Linked "config" to "./../config".
Linked "Makefile" to "./Makefile.sun".
Created "Makefile.sun" in /home/mseldre/Dakota/test using "config/mh-solaris" and
"config/mt-solaris" and "./config/ms-dakota.std"

as it generates Makefiles in the DAKOTA subdirectories.

Now that Makefiles have been created, executing the command

DAK atform 324

In
E

S

D

Co
M

output is too lengthy
issions as marked:
OTA Manuals (6/11/99) Configuration Management - Installation Examples - Sun Solaris pl

stallation
xamples

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
make

from the same$DAKOTAdirectory will build the system. While this
to fully replicate here, some excerpts are provided below with om

==
= Building Input Deck Reader executable: 'idrtest' - BEGIN =
==
if [! -d $DAKOTA/idr/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \
fi
/usr/ccs/bin/make -f Makefile.sun $DAKOTA/idr/sparc-sun-solaris2.5.1/idrtest

<<omission>>

==
= Building Input Deck Reader executable: 'idrtest' - END =
==

===
= Install DAKOTA software - BEGIN =
===
===
= Install Input Deck Reader library - BEGIN =
===
if [! -d $DAKOTA/idr/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/idr/sparc-sun-solaris2.5.1; \
fi
/usr/ccs/bin/make -f Makefile.sun library

Archiving Object File(s) -- idr.o idr-parser.o

ar ru $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a $DAKOTA/idr/sparc-sun-solaris2.5.1/
idr.o $DAKOTA/idr/sparc-sun-solaris2.5.1/idr-parser.o
ar: creating $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a
ls -lF $DAKOTA/idr/sparc-sun-solaris2.5.1/libidr.a
-rw-rw-r-- 1 <user> <user> 46684 Jan 8 09:52 $DAKOTA/idr/
sparc-sun-solaris2.5.1/libidr.a

===
= Install Input Deck Reader library - END =
===
===
= Install DAKOTA VendorOptimizers - BEGIN =
===
(for DIRS in sgopt DOT NPSOL opt++; do \

DAK atform 325

In
E

S

D

Co
M

OTA Manuals (6/11/99) Configuration Management - Installation Examples - Sun Solaris pl

stallation
xamples

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
 cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)
==
= Install SGOPT Software - BEGIN =
==
if [! -d $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1; \
fi
(for DIRS in packages src examples; do \
 cd ${DIRS}; /usr/ccs/bin/make -f Makefile.sun install; cd ..; \
done)

<<omission>>

==
= Install SGOPT Software - END =
==
=======================================
= Install DOT Package - BEGIN =
=======================================
if [! -d $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun library);

<<omission>>

=======================================
= Install DOT Package - END =
=======================================
=======================================
= Install NPSOL Package - BEGIN =
=======================================
if [! -d $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun library);

<<omission>>

=======================================
= Install NPSOL Package - END =
=======================================
===
= Install OPT++ Package - BEGIN =
===
if [! -d $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/VendorOptimizers/opt++/sparc-sun-solaris2.5.1; \

DAK atform 326

In
E

S

D

Co
M

DAKOTA_OPTPP
/.
/

o

OTA Manuals (6/11/99) Configuration Management - Installation Examples - Sun Solaris pl

stallation
xamples

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
fi

<<omission>>

==
= Install OPT++ Package - END =
==
===
= Install DAKOTA VendorOptimizers - END =
===
==
= Install DAKOTA Source - BEGIN =
==
if [! -d $DAKOTA/src/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/src/sparc-sun-solaris2.5.1; \
fi
(/usr/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/libdakota.a);

<<omission>>

(/usr/ccs/bin/make -f Makefile.sun $DAKOTA/src/sparc-sun-solaris2.5.1/dakota);

Linking Object File(s) -- Creating DAKOTA executable: dakota

CC -fast -D__EXTERN_C__ -DDAKOTA_SGOPT -DDAKOTA_DOT -DDAKOTA_NPSOL -D
-DNEWMAT -DSERIAL -DUNIX -DSOLARIS -DMULTITASK -I$DAKOTA/src/. -I$DAKOTA/idr
-I$DAKOTA/VendorOptimizers/sgopt/include/. -I$DAKOTA/VendorOptimizers/sgopt/packages
stdlib/include/. -I$DAKOTA/VendorOptimizers/DOT/include/. -I$DAKOTA/VendorOptimizers/
NPSOL/include/. -I$DAKOTA/VendorOptimizers/opt++/include/. -L/opt/SUNWspro/SC4.2/lib
-o$DAKOTA/src/sparc-sun-solaris2.5.1/dakota$DAKOTA/src/sparc-sun-solaris2.5.1/main.o
$DAKOTA/src/sparc-sun-solaris2.5.1/decomp.o $DAKOTA/src/
sparc-sun-solaris2.5.1/init_parallel_lib.o $DAKOTA/src/sparc-sun-solaris2.5.1/
keywordtable.o $DAKOTA/src/sparc-sun-solaris2.5.1/CommandLineHandler.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DakotaModel.o $DAKOTA/src/
sparc-sun-solaris2.5.1/DakotaVariables.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaResponse.o $DAKOTA/src/sparc-sun-solaris2.5.1/DakotaInterface.o
$DAKOTA/src/sparc-sun-solaris2.5.1/ApplicationInterface.o $DAKOTA/src/
sparc-sun-solaris2.5.1/SysCallApplicInterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DirectFnApplicInterface.o $DAKOTA/src/sparc-sun-solaris2.5.1/DirectFnTextBook.o
$DAKOTA/src/sparc-sun-solaris2.5.1/ExecutableProgram.o $DAKOTA/src/
sparc-sun-solaris2.5.1/AnalysisCode.o $DAKOTA/src/sparc-sun-solaris2.5.1/
CommandShell.o $DAKOTA/src/sparc-sun-solaris2.5.1/ParamResponsePair.
$DAKOTA/src/sparc-sun-solaris2.5.1/ProblemDescDB.o $DAKOTA/src/
sparc-sun-solaris2.5.1/DataMethod.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DataVariables.o $DAKOTA/src/sparc-sun-solaris2.5.1/DataResponses.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DataInterface.o $DAKOTA/src/
sparc-sun-solaris2.5.1/DakotaStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/
SingleMethodStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/MultilevelOptStrategy.o

DAK atform 327

In
E

S

D

Co
M

+/
OTA Manuals (6/11/99) Configuration Management - Installation Examples - Sun Solaris pl

stallation
xamples

EACAS
Library

AKOTA
Manuals

nfiguration
anagement

Draft Version
$DAKOTA/src/sparc-sun-solaris2.5.1/SeqApproxOptStrategy.o $DAKOTA/src/
sparc-sun-solaris2.5.1/NonDOptStrategy.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaIterator.o $DAKOTA/src/sparc-sun-solaris2.5.1/ParamStudy.o
$DAKOTA/src/sparc-sun-solaris2.5.1/DakotaNonD.o $DAKOTA/src/
sparc-sun-solaris2.5.1/NonDProbability.o $DAKOTA/src/sparc-sun-solaris2.5.1/
NonDMeanValue.o $DAKOTA/src/sparc-sun-solaris2.5.1/Lhs.o
$DAKOTA/src/sparc-sun-solaris2.5.1/LhsInput.o $DAKOTA/src/
sparc-sun-solaris2.5.1/Vm_util.o $DAKOTA/src/sparc-sun-solaris2.5.1/
DakotaOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/DOTOptimizer.o
$DAKOTA/src/sparc-sun-solaris2.5.1/SNLLOptimizer.o $DAKOTA/
src/sparc-sun-solaris2.5.1/SGOPTOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/
SGOPTRealApplication.o $DAKOTA/src/sparc-sun-solaris2.5.1/
NPSOLOptimizer.o $DAKOTA/src/sparc-sun-solaris2.5.1/npoptn_wrapper.o $DAKOTA/idr/
sparc-sun-solaris2.5.1/libidr.a $DAKOTA/VendorOptimizers/sgopt/sparc-sun-solaris2.5.1/
libsgopt.a $DAKOTA/VendorOptimizers/sgopt/packages/stdlib/sparc-sun-solaris2.5.1/
libstdlib.a $DAKOTA/VendorOptimizers/DOT/sparc-sun-solaris2.5.1/libdot.a $DAKOTA/
VendorOptimizers/NPSOL/sparc-sun-solaris2.5.1/libnpsol.a $DAKOTA/VendorOptimizers/opt+
sparc-sun-solaris2.5.1/liboptpp.a -lrwtool -lM77 -lF77 -lsunmath -ll -ly -lm

==
= Install DAKOTA Source - END =
==
===
= Install DAKOTA Test code - BEGIN =
===
if [! -d $DAKOTA/test/sparc-sun-solaris2.5.1]; then \
 mkdir -m 775 $DAKOTA/test/sparc-sun-solaris2.5.1; \
fi

<<omission>>

===
= Install DAKOTA Test code - END =
===
==
= Install DAKOTA software - END =
==

You can now change directories to the test area
cd test

and execute dakota on the test files therein, e.g.:
dakota -i dakota_textbook.in

SEACAS
Library

DAKOTA Manuals (6/11/99) Main Menu - Example Problems 328

DAKOTA
Manuals

Example
Problems

Developer’s
Guide

User’s
Instructions

Configuration
Management

Theory
Manual

Draft Version

i Blue text
indicates

a link to more
information.

Example Problems

Test problems
Textbook Example
Rosenbrock Example
Illumination Example
Cylinder Head Example

Engineering Applications

DAKOTA Manuals (6/11 329

SEACAS
Library

DAKOTA
Manuals

Example
Problems

Te
Ex

i Blue text
indicates

a link to more
information.

Te

Me

Re
/99) Example Problems - Textbook Example

Rosenbrock
Example

xtbook
ample

Draft Version

Illumination
Example

Cylinder
Head

Example

Engineering
Applications

Textbook Example

xtbook Problem Formulation

thods

sults
Optimization
Least Squares

DAK lation 330

T

S

D

P

(8)

(9)

(10)

(11)

(12)

es solution methods by

(13)

s specification for the
OTA Manuals (6/11/99) Example Problems - Textbook Example - Textbook Problem Formu

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Textbook Problem Formulation

The optimization problem formulation is stated as
minimize

subject to

This example problem may also be used to exercise least squar
modifying the problem formulation to:

minimize

This modification is performed by simply changing the response
three functions fromnum_objective_functions = 1 and

f x 1 1–()4 x 2 1–()4 … x n 1–()4+ + +=

g1 x 1
2 x 2

2
------–= 0≤

g2 x 2
2

0.5–= 0≤

0.5 x≤ 1 5.8≤

2.9– x≤ 2 2.9≤

f()2 g1()2 g2()2+ +

DAK lation 331

T

S

D

P

erms = 3 .
have different solutions.
imum objective function
ares formulation seeks to

 be equivalent to the

s to be(x i -1) 2.

ok.C and will
t require any modification
f minimizing the
s approaches.
OTA Manuals (6/11/99) Example Problems - Textbook Example - Textbook Problem Formu

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
num_nonlinear_constraints = 2 to num_least_squares_t
Note that the 2 problem formulations are not equivalent and will
More specifically, the optimization solution seeks to find the min
which satisfies the constraint inequalities, whereas the least squ
minimize the sum of the squares of the three residual functions.

Another way to exercise the least squares methods which would

optimization formulation would be to select the residual function

However, this formulation requires significant modification totext_bo
not be presented here. Equation (13), on the other hand, does no
to text_book.C . Refer toRosenbrock Example for an example o
same objective function using both optimization and least square

DAK 332

T

S

D

P

n problem with or
he unconstrained

irectory selects a
theext_book
 by the optimizer.

blem. The
ectory starts with a
oord_sps

this approach is
e coordination between

of a 3-piece interface
lhs.in
r assessing probability of
OTA Manuals (6/11/99) Example Problems - Textbook Example - Methods

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Methods

DOT and NPSOL methods may be used to solve this optimizatio
without the constraints. OPT++ methods may be used to solve t
optimization problem or the least squares problem.

Thedakota_textbook.in file provided in theDakota/test d
dot_mmfd optimizer to perform constrained minimization using t
simulator. This simulator returns analytic gradients as requested

A multilevel hybrid can also be demonstrated on thetext_book pro
dakota_multilevel.in file provided in theDakota/test dir
sgopt_pga_real solution which feeds its best point into asgopt_c
optimization which feeds its best point intooptpp_newton . While
overkill for such a simple problem, it is useful for demonstrating th
multiple methods in the multilevel strategy.

In addition,dakota_textbook_3pc.in demonstrates the use
to perform the parameter to response mapping anddakota_textbook_
demonstrates the use of latin hypercube Monte Carlo sampling fo
failure as measured by specified response thresholds.

DAK 333

T

S

D

P

sign variables is:

:

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Results

Optimization

The solution for the unconstrained optimization problem for 2 de
x1 = 1.0
x2 = 1.0

with
f* = 0.0

The solution for the optimization problem constrained byg1 is:
x1 = 0.763
x2 = 1.16

with
f* = 0.00388
g1* = 0.0 (active)

The solution for the optimization problem constrained byg1 andg2 is
x1 = 0.594
x2 = 0.707

with
f* = 0.0345
g1* = 0.0 (active)
g2* = 0.0 (active)

DAK 334

T

S

D

P

ted and a penalty in the
bserved if the additional

 12 function calls and 5
ation is shown below:
OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
Note that as constraints are added, the design freedom is restric
objective function is observed. Of course, no penalty would be o
constraints were not active at the solution.

Thedot_sqp optimizer navigates to the constrained optimum in
gradient calls (17 evaluations total). The output from this minimiz

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = dot_sqp
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

 DDDDD OOOOO TTTTTTT
 D D O O T
 D D == O * O == T
 D D O O T
 DDDDD OOOOO T

 DESIGN OPTIMIZATION TOOLS

 (C) COPYRIGHT, 1995

 VR&D

 ALL RIGHTS RESERVED, WORLDWIDE

 VERSION 4.20

 - YOUR INTEGRITY IS OUR COPY PROTECTION -

DAK 335

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

 CONTROL PARAMETERS

 OPTIMIZATION METHOD, METHOD = 3
 NUMBER OF DECISION VARIABLES, NDV = 2
 NUMBER OF CONSTRAINTS, NCON = 2
 PRINT CONTROL PARAMETER, IPRINT = 3
 GRADIENT PARAMETER, IGRAD = 1
 GRADIENTS ARE SUPPLIED BY THE USER
 THE OBJECTIVE FUNCTION WILL BE MINIMIZED

Begin Function Evaluation 1

Parameters for function evaluation 1:
 9.0000000000e-01 x1
 1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:
Active set vector = { 1 1 1 }
 2.0000000000e-04 obj_fn
 2.6000000000e-01 nln_con1
 7.1000000000e-01 nln_con2

 -- SCALAR PROGRAM PARAMETERS

 REAL PARAMETERS
 1) CT = -3.00000E-02 8) DX2 = 2.20000E-01
 2) CTMIN = 3.00000E-03 9) FDCH = 1.00000E-03
 3) DABOBJ = 2.00000E-08 10) FDCHM = 1.00000E-04
 4) DELOBJ = 1.00000E-04 11) RMVLMZ = 4.00000E-01
 5) DOBJ1 = 1.00000E-01 12) DABSTR = 2.00000E-08
 6) DOBJ2 = 2.00000E-01 13) DELSTR = 1.00000E-03
 7) DX1 = 1.00000E-02

 INTEGER PARAMETERS
 1) IGRAD = 1 6) NCOLA = 2 11) IPRNT1 = 0
 2) ISCAL = 1000 7) IGMAX = 0 12) IPRNT2 = 0
 3) ITMAX = 50 8) JTMAX = 50 13) JWRITE = 0

DAK 336

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 4) ITRMOP = 2 9) ITRMST = 2
 5) IWRITE = 6 10) JPRINT = 0

 STORAGE REQUIREMENTS
 ARRAY DIMENSION REQUIRED
 WK 136 136
 IWK 81 81

 -- INITIAL VARIABLES AND BOUNDS

 LOWER BOUNDS ON THE DECISION VARIABLES (XL-VECTOR)
 1) 5.00000E-01 -2.90000E+00

 DECISION VARIABLES (X-VECTOR)
 1) 9.00000E-01 1.10000E+00

 UPPER BOUNDS ON THE DECISION VARIABLES (XU-VECTOR)
 1) 5.80000E+00 2.90000E+00

 -- INITIAL FUNCTION VALUES

 OBJ = 2.00000E-04

 CONSTRAINT VALUES (G-VECTOR)
 1) 2.60000E-01 7.10000E-01

 -- BEGIN CONSTRAINED OPTIMIZATION: SQP METHOD

 -- BEGIN SQP ITERATION 1

Begin Function Evaluation 2

Parameters for function evaluation 2:
 9.0000000000e-01 x1
 1.1000000000e+00 x2

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:
Active set vector = { 2 2 2 }
 [-4.0000000000e-03 4.0000000000e-03] obj_fn gradient
 [1.8000000000e+00 -5.0000000000e-01] nln_con1 gradient

DAK 337

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 [0.0000000000e+00 2.2000000000e+00] nln_con2 gradient

Begin Function Evaluation 3

Parameters for function evaluation 3:
 6.6386363636e-01 x1
 7.7590909091e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:
Active set vector = { 1 1 1 }
 1.5287930702e-02 obj_fn
 5.2760382226e-02 nln_con1
 1.0203491736e-01 nln_con2

Begin Function Evaluation 4

Duplication detected in response requests for this parameter set:
 6.6386363636e-01 x1
 7.7590909091e-01 x2

Active response data retrieved from database:
Active set vector = { 1 1 1 }
 1.5287930702e-02 obj_fn
 5.2760382226e-02 nln_con1
 1.0203491736e-01 nln_con2

 OBJ = 1.52879E-02

 DECISION VARIABLES (X-VECTOR)
 1) 6.63864E-01 7.75909E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 5.27604E-02 1.02035E-01

 GMAX = 1.0203E-01

 -- BEGIN SQP ITERATION 2

DAK 338

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Begin Function Evaluation 5

Parameters for function evaluation 5:
 6.6386363636e-01 x1
 7.7590909091e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:
Active set vector = { 2 2 2 }
 [-1.5191703790e-01 -4.5012455672e-02] obj_fn gradient
 [1.3277272727e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.5518181818e+00] nln_con2 gradient

Begin Function Evaluation 6

Parameters for function evaluation 6:
 5.9637770195e-01 x1
 7.0822402407e-01 x2

(text_book text_book.in.6 text_book.out.6)

Active response data for function evaluation 6:
Active set vector = { 1 1 1 }
 3.3787645889e-02 obj_fn
 1.5543513482e-03 nln_con1
 1.5812682699e-03 nln_con2

Begin Function Evaluation 7

Parameters for function evaluation 7:
 6.0987488883e-01 x1
 7.2176103744e-01 x2

(text_book text_book.in.7 text_book.out.7)

Active response data for function evaluation 7:
Active set vector = { 1 1 1 }
 2.9157489712e-02 obj_fn
 1.1066861305e-02 nln_con1

DAK 339

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 2.0938995166e-02 nln_con2

Begin Function Evaluation 8

Parameters for function evaluation 8:
 6.1399879055e-01 x1
 7.2589710766e-01 x2

(text_book text_book.in.8 text_book.out.8)

Active response data for function evaluation 8:
Active set vector = { 1 1 1 }
 2.7844963118e-02 obj_fn
 1.4045960967e-02 nln_con1
 2.6926610909e-02 nln_con2

 OBJ = 2.78450E-02

 DECISION VARIABLES (X-VECTOR)
 1) 6.13999E-01 7.25897E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) 1.40460E-02 2.69266E-02

 GMAX = 2.6927E-02

 -- BEGIN SQP ITERATION 3

Begin Function Evaluation 9

Parameters for function evaluation 9:
 6.1399879055e-01 x1
 7.2589710766e-01 x2

(text_book text_book.in.9 text_book.out.9)

Active response data for function evaluation 9:
Active set vector = { 2 2 2 }
 [-2.3005198645e-01 -8.2376027758e-02] obj_fn gradient
 [1.2279975811e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.4517942153e+00] nln_con2 gradient

DAK 340

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Begin Function Evaluation 10

Parameters for function evaluation 10:
 5.9089395588e-01 x1
 7.0528357263e-01 x2

(text_book text_book.in.10 text_book.out.10)

Active response data for function evaluation 10:
Active set vector = { 1 1 1 }
 3.5556238180e-02 obj_fn
 -3.4861192195e-03 nln_con1
 -2.5750821783e-03 nln_con2

Begin Function Evaluation 11

Parameters for function evaluation 11:
 5.9551492281e-01 x1
 7.0940627964e-01 x2

(text_book text_book.in.11 text_book.out.11)

Active response data for function evaluation 11:
Active set vector = { 1 1 1 }
 3.3898544900e-02 obj_fn
 -6.5116530600e-05 nln_con1
 3.2572695927e-03 nln_con2

Begin Function Evaluation 12

Parameters for function evaluation 12:
 5.9559270455e-01 x1
 7.0947567449e-01 x2

(text_book text_book.in.12 text_book.out.12)

Active response data for function evaluation 12:
Active set vector = { 1 1 1 }

DAK 341

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 3.3871152259e-02 obj_fn
 -7.1675318164e-06 nln_con1
 3.3557326930e-03 nln_con2

 OBJ = 3.38712E-02

 DECISION VARIABLES (X-VECTOR)
 1) 5.95593E-01 7.09476E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -7.16753E-06 3.35573E-03

 GMAX = 3.3557E-03

 -- BEGIN SQP ITERATION 4

Begin Function Evaluation 13

Parameters for function evaluation 13:
 5.9559270455e-01 x1
 7.0947567449e-01 x2

(text_book text_book.in.13 text_book.out.13)

Active response data for function evaluation 13:
Active set vector = { 2 2 2 }
 [-2.6455558611e-01 -9.8086106593e-02] obj_fn gradient
 [1.1911854091e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.4189513490e+00] nln_con2 gradient

Begin Function Evaluation 14

Parameters for function evaluation 14:
 5.9371257075e-01 x1
 7.0499649858e-01 x2

(text_book text_book.in.14 text_book.out.14)

Active response data for function evaluation 14:
Active set vector = { 1 1 1 }
 3.4821641822e-02 obj_fn

DAK 342

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 -3.6326234263e-06 nln_con1
 -2.9799369899e-03 nln_con2

Begin Function Evaluation 15

Parameters for function evaluation 15:
 5.9408859751e-01 x1
 7.0589233377e-01 x2

(text_book text_book.in.15 text_book.out.15)

Active response data for function evaluation 15:
Active set vector = { 1 1 1 }
 3.4629329912e-02 obj_fn
 -4.9051936012e-06 nln_con1
 -1.7160131247e-03 nln_con2

Begin Function Evaluation 16

Parameters for function evaluation 16:
 5.9442052455e-01 x1
 7.0668310706e-01 x2

(text_book text_book.in.16 text_book.out.16)

Active response data for function evaluation 16:
Active set vector = { 1 1 1 }
 3.4460496673e-02 obj_fn
 -5.7935237028e-06 nln_con1
 -5.9898619602e-04 nln_con2

 OBJ = 3.44605E-02

 DECISION VARIABLES (X-VECTOR)
 1) 5.94421E-01 7.06683E-01

 CONSTRAINT VALUES (G-VECTOR)
 1) -5.79352E-06 -5.98986E-04

 GMAX = -5.7935E-06

DAK 343

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

 -- BEGIN SQP ITERATION 5

Begin Function Evaluation 17

Parameters for function evaluation 17:
 5.9442052455e-01 x1
 7.0668310706e-01 x2

(text_book text_book.in.17 text_book.out.17)

Active response data for function evaluation 17:
Active set vector = { 2 2 2 }
 [-2.6686271425e-01 -1.0094184051e-01] obj_fn gradient
 [1.1888410491e+00 -5.0000000000e-01] nln_con1 gradient
 [0.0000000000e+00 1.4133662141e+00] nln_con2 gradient

 Q.P. SUB-PROBLEM GAVE NULL SEARCH DIRECTION. CONVERGENCE ASSUMED.

 -- OPTIMIZATION IS COMPLETE

 NUMBER OF CONSTRAINED MINIMIZATIONS = 5

 CONSTRAINT TOLERANCE, CT =-3.00000E-02

 THERE ARE 2 ACTIVE CONSTRAINTS AND 0 VIOLATED CONSTRAINTS
 CONSTRAINT NUMBERS
 1 2

 THERE ARE 0 ACTIVE SIDE CONSTRAINTS

 TERMINATION CRITERIA

 MAXIMUM S-VECTOR COMPONENT = 0.00000E+00 IS LESS THAN 1.00000E-04

 -- OPTIMIZATION RESULTS

 OBJECTIVE, F(X) = 3.44605E-02

DAK 344

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

 DECISION VARIABLES, X

 ID XL X XU
 1 5.00000E-01 5.94421E-01 5.80000E+00
 2 -2.90000E+00 7.06683E-01 2.90000E+00

 CONSTRAINTS, G(X)

 1) -5.79352E-06 -5.98986E-04

 FUNCTION CALLS = 12

 GRADIENT CALLS = 5

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)
<<<<< Best design parameters =
 5.9442052455e-01 x1
 7.0668310706e-01 x2
<<<<< Best objective function =
 3.4460496673e-02
<<<<< Best constraint values =
 -5.7935237028e-06
 -5.9898619602e-04
Run time from MPI_Init to MPI_Finalize is 2.3499540000e+00 seconds

Least Squares

The solution for the least squares problem is:
x1 = 0.602
x2 = 0.710

with the residual functions equal to
f* = 0.0322
g1* = 0.00673
g2* = 0.00455

and a minimal sum of the squares of 0.00111.

DAK 345

T

S

D

P

 in the responses
g_newton in
tes to the least
hown below:
OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
This study requires selection ofnum_least_squares_terms = 3
specification and selection of eitheroptpp_g_newton or optpp_bc
the method specification. Theoptpp_bcg_newton method naviga
squares solution in 5 function and gradient calls. This output is s

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

Begin Function Evaluation 1

Parameters for function evaluation 1:
 9.0000000000e-01 x1
 1.1000000000e+00 x2

(text_book text_book.in.1 text_book.out.1)

Active response data for function evaluation 1:
Active set vector = { 3 3 3 }
 2.0000000000e-04 least_sq_term1
 2.6000000000e-01 least_sq_term2
 7.1000000000e-01 least_sq_term3
 [-4.0000000000e-03 4.0000000000e-03] least_sq_term1 gradient
 [1.8000000000e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 2.2000000000e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 5.7170004000e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [9.3599840000e-01 2.8640016000e+00]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[6.4800320000e+00 -1.8000320000e+00
 -1.8000320000e+00 1.0180032000e+01]]

Begin Function Evaluation 2

DAK 346

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Parameters for function evaluation 2:
 6.6590894007e-01 x1
 7.7727283167e-01 x2

(text_book text_book.in.2 text_book.out.2)

Active response data for function evaluation 2:
Active set vector = { 3 3 3 }
 1.4919211444e-02 least_sq_term1
 5.4798300630e-02 least_sq_term2
 1.0415305485e-01 least_sq_term3
 [-1.4916074862e-01 -4.4195655359e-02] least_sq_term1 gradient
 [1.3318178801e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.5545456633e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.4073295457e-02
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.4151199166e-01 2.6770433019e-01]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.5919755894e+00 -1.3186333660e+00
 -1.3186333660e+00 5.3371309505e+00]]

Begin Function Evaluation 3

Parameters for function evaluation 3:
 6.0233226286e-01 x1
 7.1140623577e-01 x2

(text_book text_book.in.3 text_book.out.3)

Active response data for function evaluation 3:
Active set vector = { 3 3 3 }
 3.1944760199e-02 least_sq_term1
 7.1010369970e-03 least_sq_term2
 6.0988322924e-03 least_sq_term3
 [-2.5154811392e-01 -9.6143697434e-02] least_sq_term1 gradient
 [1.2046645257e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.4228124715e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.1080881859e-03
 nlf2_evaluator_gn results: objective fn. gradient =

DAK 347

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 [1.0374463766e-03 4.1113775791e-03]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0289861462e+00 -1.1562949942e+00
 -1.1562949942e+00 4.5672778792e+00]]

Begin Function Evaluation 4

Parameters for function evaluation 4:
 6.0157271127e-01 x1
 7.1031375941e-01 x2

(text_book text_book.in.4 text_book.out.4)

Active response data for function evaluation 4:
Active set vector = { 3 3 3 }
 3.2242004707e-02 least_sq_term1
 6.7328472397e-03 least_sq_term2
 4.5456368072e-03 least_sq_term3
 [-2.5299225122e-01 -9.7239696468e-02] least_sq_term1 gradient
 [1.2031454225e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.4206275188e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.1055409135e-03
 nlf2_evaluator_gn results: objective fn. gradient =
 [-1.1276603567e-04 -8.7939264600e-05]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0231279737e+00 -1.1539436431e+00
 -1.1539436431e+00 4.5552762115e+00]]

Begin Function Evaluation 5

Parameters for function evaluation 5:
 6.0162216282e-01 x1
 7.1034559141e-01 x2

(text_book text_book.in.5 text_book.out.5)

Active response data for function evaluation 5:
Active set vector = { 3 3 3 }
 3.2226401354e-02 least_sq_term1
 6.7764310912e-03 least_sq_term2
 4.5908592356e-03 least_sq_term3

DAK 348

T

S

D

P

OTA Manuals (6/11/99) Example Problems - Textbook Example - Results

extbook
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 [-2.5289806109e-01 -9.7207644612e-02] least_sq_term1 gradient
 [1.2032443256e+00 -5.0000000000e-01] least_sq_term2 gradient
 [0.0000000000e+00 1.4206911828e+00] least_sq_term3 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.1055369511e-03
 nlf2_evaluator_gn results: objective fn. gradient =
 [7.4156799421e-06 2.6502438991e-06]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[3.0235086728e+00 -1.1540770759e+00
 -1.1540770759e+00 4.5556255261e+00]]

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 5 total (5 new, 0 duplicate)
<<<<< Best design parameters =
 6.0162216282e-01 x1
 7.1034559141e-01 x2
<<<<< Best objective function =
 1.1055369511e-03
Run time from MPI_Init to MPI_Finalize is 9.5173000000e-01 seconds

DAKOTA Manuals (6/11 349

SEACAS
Library

DAKOTA
Manuals

Example
Problems

Te
Ex

i Blue text
indicates

a link to more
information.

Ro

Me

Re
/99) Example Problems - Rosenbrock Example

xtbook
ample

Rosenbrock
Example

Draft Version

Illumination
Example

Cylinder
Head

Example

Engineering
Applications

Rosenbrock Example

senbrock Problem Formulation

thods

sults

DAK rmulation 350

R

S

D

P

n

.H., 1981]) is a
rmulation can be stated

(14)

es solution methods by

(15)

(16)

(17)

ation inTextbook
and will have identical
OTA Manuals (6/11/99) Example Problems - Rosenbrock Example - Rosenbrock Problem Fo

osenbrock
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Rosenbrock Problem Formulatio

The Rosenbrock function (see[Gill, P.E., Murray, W., and Wright, M
well known benchmark problem for optimization algorithms. Its fo
as

minimize

This example problem may also be used to exercise least squar
recasting the problem formulation into:

minimize

where

and

are residual terms. In this case (unlike the least squares modific
Problem Formulation), the 2 problem formulations are equivalent
solutions.

f 100 x 2 x 1
2

–()
2

1 x– 1()2
+=

f f 1()2 f 2()2+=

f 1 10 x 2 x 1
2

–()=

f 2 1 x 1–=

DAK 351

R

S

D

P

piled from
 Eq. (14) for use with
 from

ted from Eqs. (16) and
 analytic gradients of the
ients of the least

variables. The
ms by toggling

To run the optimization
interface
responses
 optimizer in the method

\
\

\
\

\
\

\
\

\

\

OTA Manuals (6/11/99) Example Problems - Rosenbrock Example - Methods

osenbrock
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Methods

In theDakota/test directory, therosenbrock executable (com
rosenbrock.C) returns an objective function as computed from
optimization methods. Therosenbrock_ls executable (compiled
rosenbrock_ls.C) returns two least squares terms as compu
(17) for use with least squares iterators. Both executables return
function set (gradient of the objective function inrosenbrock , grad
squares residuals inrosenbrock_ls) with respect to the design
dakota_rosenbrock.in input file is used to solve both proble
settings in the interface, responses, and method specifications.
solution, select’rosenbrock’ as theanalysis_driver in the
specification, selectnum_objective_functions to be 1 in the
specification, and select an unconstrained or bound-constrained
specification (e.g.,dot_bfgs , optpp_bcq_newton), e.g.:

interface,
application system,
 analysis_driver = ’rosenbrock’

variables,
continuous_design = 2
 cdv_initial_point 0.8 0.7 \
 cdv_lower_bounds -2.0 -2.0
 cdv_upper_bounds 2.0 2.0
 cdv_descriptor ’x1’ ’x2’

responses,
num_objective_functions = 1
analytic_gradients
no_hessians

method,

DAK 352

R

S

D

P

\
\

ation, and select a
ton or

\
\

\
\

\
\

\
\
\

\
\

\

OTA Manuals (6/11/99) Example Problems - Rosenbrock Example - Methods

osenbrock
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
optpp_bcq_newton,
 max_iterations = 500
 convergence_tolerance = 1e-10

To run the least squares solution, select’rosenbrock_ls’ as the
analysis_driver in the interface specification, select
num_least_squares_terms to be 2 in the responses specific
Gauss-Newton iterator in the method specification (i.e.,optpp_g_new
optpp_bcg_newton), e.g.:

interface,
application system,
 analysis_driver = ’rosenbrock_ls’

variables,
continuous_design = 2
 cdv_initial_point 0.8 0.7 \
 cdv_lower_bounds -2.0 -2.0
 cdv_upper_bounds 2.0 2.0
 cdv_descriptor ’x1’ ’x2’

responses,
num_least_squares_terms = 2
analytic_gradients
no_hessians

method,
optpp_bcg_newton,
 max_iterations = 500
 convergence_tolerance = 1e-10

DAK 353

R

S

D

P

an optimization problem,

Newton approach to be
ares objective function.
tarting from
method converges
ton method
accuracy. Starting from a
s specified in
vious since both
mum (total function and
_bcg_newton).
 rapid with the Gauss-

ive function in 1 function
2 orders of magnitude

aluations).
OTA Manuals (6/11/99) Example Problems - Rosenbrock Example - Results

osenbrock
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Results

The optimal solution, solved either as a least squares problem or
is:

x1 = 1.0
x2 = 1.0

with
f* = 0.0

In comparing the two approaches, one would expect the Gauss-
more efficient since it exploits the special-structure of a least squ
From a good initial guess, this expected behavior is observed. S
cdv_initial_point = 0.8, 0.7 , theoptpp_bcg_newton
in only 3 function and gradient evaluations while theoptpp_bcq_new
requires 14 function and gradient evaluations to achieve similar
poorer initial guess (e.g.,cdv_initial_point = -1.2, 1.0 a
Dakota/test/dakota_rosenbrock.in), the trend is less ob
methods spend several evaluations finding the vicinity of the mini
gradient evaluations = 24 foroptpp_bcq_newton and 29 foroptpp
However, once the vicinity is located, convergence is much more
Newton approach (11 orders of magnitude reduction in the object
and gradient evaluation) than with the quasi-Newton approach (1
reduction in the objective function in 10 function and gradient ev

DAK 354

R

S

D

P

ethod starting
OTA Manuals (6/11/99) Example Problems - Rosenbrock Example - Results

osenbrock
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
Shown below is the DAKOTA output for theoptpp_bcg_newton m
from cdv_initial_point = 0.8, 0.7 :

MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = optpp_bcg_newton
gradientType = analytic
hessianType = none
Running MPI executable in serial mode.
Running Single Method Strategy...

Begin Function Evaluation 1

Parameters for function evaluation 1:
 8.0000000000e-01 x1
 7.0000000000e-01 x2

(rosenbrock_ls /var/tmp/aaaa000Sg /var/tmp/baaa000Sg)
Removing /var/tmp/aaaa000Sg and /var/tmp/baaa000Sg

Active response data for function evaluation 1:
Active set vector = { 3 3 }
 6.0000000000e-01 least_sq_term1
 2.0000000000e-01 least_sq_term2
 [-1.6000000000e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 4.0000000000e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [-1.9600000000e+01 1.2000000000e+01]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[5.1400000000e+02 -3.2000000000e+02
 -3.2000000000e+02 2.0000000000e+02]]

Begin Function Evaluation 2

Parameters for function evaluation 2:
 9.9999528206e-01 x1
 9.5999243139e-01 x2

DAK 355

R

S

D

P

OTA Manuals (6/11/99) Example Problems - Rosenbrock Example - Results

osenbrock
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
(rosenbrock_ls /var/tmp/caaa000Sg /var/tmp/daaa000Sg)
Removing /var/tmp/caaa000Sg and /var/tmp/daaa000Sg

Active response data for function evaluation 2:
Active set vector = { 3 3 }
 -3.9998132752e-01 least_sq_term1
 4.7179400000e-06 least_sq_term2
 [-1.9999905641e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 1.5998506239e-01
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.5999168181e+01 -7.9996265504e+00]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199245130e+02 -3.9999811282e+02
 -3.9999811282e+02 2.0000000000e+02]]

Begin Function Evaluation 3

Parameters for function evaluation 3:
 9.9999904378e-01 x1
 9.9999808275e-01 x2

(rosenbrock_ls /var/tmp/eaaa000Sg /var/tmp/faaa000Sg)
Removing /var/tmp/eaaa000Sg and /var/tmp/faaa000Sg

Active response data for function evaluation 3:
Active set vector = { 3 3 }
 -4.8109144446e-08 least_sq_term1
 9.5621999996e-07 least_sq_term2
 [-1.9999980876e+01 1.0000000000e+01] least_sq_term1 gradient
 [-1.0000000000e+00 0.0000000000e+00] least_sq_term2 gradient

 nlf2_evaluator_gn results: objective fn. =
 9.1667117810e-13
 nlf2_evaluator_gn results: objective fn. gradient =
 [1.1923937841e-08 -9.6218288892e-07]
 nlf2_evaluator_gn results: objective fn. Hessian =
[[8.0199847008e+02 -3.9999961752e+02
 -3.9999961752e+02 2.0000000000e+02]]

<<<<< Single method iteration completed.

DAK 356

R

S

D

P

OTA Manuals (6/11/99) Example Problems - Rosenbrock Example - Results

osenbrock
Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
<<<<< Function evaluation summary: 3 total (3 new, 0 duplicate)
<<<<< Best design parameters =
 9.9999904378e-01 x1
 9.9999808275e-01 x2
<<<<< Best objective function =
 9.1667117810e-13
Run time from MPI_Init to MPI_Finalize is 7.8900400000e-01 seconds

DAKOTA Manuals (6/11 357

SEACAS
Library

DAKOTA
Manuals

Example
Problems

i Blue text
indicates

a link to more
information.

Te
Ex

Cy

Me

Op
/99) Example Problems - Cylinder Head Example

Draft Version

Cylinder
Head

Example

xtbook
ample

Engineering
Applications

Rosenbrock
Example

Illumination
Example

Cylinder Head Example

linder Head Problem Formulation

thods

timization Results

DAK ormulation 358

S

D

P

tion

ration problem for the
ormulation is stated as

(18)

(19)

(20)

(21)

(22)

(23)

ngine horsepower and
nches and overall

nstraints that the
 be at least 100000 miles,
. The objective function
OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Cylinder Head Problem F

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Cylinder Head Problem Formula

The cylinder head example problem arose as a simple demonst
Technologies Enabling Agile Manufacturing (TEAM) project. Its f

minimize

subject to

This formulation seeks to simultaneously maximize normalized e
engine warranty over variables of valve intake diameter (dintake) in i

head flatness (flatness) in thousandths of an inch subject to co
maximum stress cannot exceed half of yield, that warranty must
and that manufacturing cycle time must be less than 60 seconds

f 1 horsepower
250

--------------------------------------- warranty
100000

-------------------------------+
 –=

g1 σmax 0.5σyield–= 0≤

g2 100000 warranty–= 0≤

g3 time cycle 60–= 0≤

1.5 d≤ intake 2.164≤

0.0 flatness≤ 4.0≤

DAK ormulation 359

S

D

P

ccording to the following

(24)

(25)

(26)

(27)

(28)

 values:σyield =

xhaust = 1.556 .

)

dexhaust)

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Cylinder Head Problem F

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
and constraints are related analytically to the design variables a
simple expressions:

where the constants in Eqns. (19) and (28) assume the following

3000 , offset intake = 3.25 , offset exhaust = 1.34 , andde

warranty 100000 15000 4 flatness–(+=

time cycle 45 4.5 4 flatness–()1.5
+=

horsepower 250 200
dintake

1.8333
---------------------- 1–

 +=

σmax 750 1

t wall()2.5
--------------------------+=

t wall offset intake offset exhaust–
dintake +(

2
----------------------------–=

DAK 360

S

D

P

 file is used to

\
\

\

\
\

\
\
\

\
\

\
\

\
\

\

ompiled from
d responses keywords
initial point, descriptors,
 and by specifying the
ic gradients in the
OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Methods

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Methods

In theDakota/test directory, thedakota_cyl_head.in input
execute the cylinder head example. This file is shown below:

interface,
application system,
 asynchronous
 analysis_driver= ‘cyl_head’

variables,
continuous_design = 2
 cdv_initial_point 1.8 1.0\
 cdv_upper_bounds 2.164 4.0\
 cdv_lower_bounds 1.5 0.0\
 cdv_descriptor ‘intake_dia’ ‘flatness’

responses,
num_objective_functions = 1
num_nonlinear_constraints = 3
numerical_gradients
 method_source dakota
 interval_type central
 fd_step_size = 1.e-4
no_hessians

method,
 npsol_sqp

 convergence_tolerance = 1.e-8
linear_constraints = 1. 1. -3.7\

 output verbose

The interface keyword specifies use of thecyl_head executable (c
Dakota/test/cyl_head.C) as the simulator. The variables an
specify the data sets to be used in the iteration by providing the
and upper and lower bounds for two continuous design variables
presence of one objective function, three constraints, and analyt

DAK 361

S

D

P

ethod to solve this
ed, so the default
OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Methods

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
problem. The method keyword specifies the use of thenpsol_sqp m
constrained optimization problem. No strategy keyword is specifi
single_method strategy is used.

DAK ults 362

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Optimization Results

The solution for the constrained optimization problem is:
intake_dia = 2.122
flatness = 1.769

with
f* = -2.461
g1* = 0.0 (active)
g2* = -0.3347 (inactive)
g2* = 0.0 (active)

which corresponds to the following optimal response quantities:
warranty = 133472
cycle_time = 60
horse_power = 281.579
max_stress = 1500

The DAKOTA output follows:
MPI initialized with 1 processors.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
no method_pointer: last specifications parsed will be used
methodName = npsol_sqp
gradientType = analytic
hessianType = none

NPSOL option settings:

Verify Level = -1
Major Print Level = 20
Function Precision = 1e-10
Linesearch Tolerance = 0.9
Major Iteration Limit = 100
Optimality Tolerance = 1e-08
NOTE: NPSOL’s convergence tolerance is not a relative tolerance.
 See pp. 21-22 of NPSOL manual for description.
Derivative Level = 3

DAK ults 363

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
Running MPI executable in serial mode.
Running Single Method Strategy...

 NPSOL --- Version 4.06-2 Nov 1992
 ==

Begin Function Evaluation 1

Parameters for function evaluation 1:
 1.8000000000e+00 intake_dia
 1.0000000000e+00 flatness

(cyl_head /var/tmp/aaaa0010M /var/tmp/baaa0010M)
In cyl_head evaluator:
warranty = 145000
cycle_time = 68.3827
wall_thickness = 0.232
horse_power = 246.399
max_stress = 788.573
Removing /var/tmp/aaaa0010M and /var/tmp/baaa0010M

Active response data for function evaluation 1:
Active set vector = { 3 3 3 3 }
 -2.4355973813e+00 obj_fn
 -4.7428486677e-01 nln_con1
 -4.5000000000e-01 nln_con2
 1.3971143170e-01 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [1.3855136438e-01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.9485571585e-01] nln_con3 gradient

 Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
 0 2 0.0E+00 1 -1.98878999E+00 3.9E-01 0.0E+00 0 4.6E+01 F TF

Begin Function Evaluation 2

Parameters for function evaluation 2:
 2.1640000000e+00 intake_dia

DAK ults 364

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 1.7169994018e+00 flatness

(cyl_head /var/tmp/caaa0010M /var/tmp/daaa0010M)
In cyl_head evaluator:
warranty = 134245
cycle_time = 60.5229
wall_thickness = 0.05
horse_power = 286.116
max_stress = 2538.85
Removing /var/tmp/caaa0010M and /var/tmp/daaa0010M

Active response data for function evaluation 2:
Active set vector = { 3 3 3 3 }
 -2.4869127193e+00 obj_fn
 6.9256958800e-01 nln_con1
 -3.4245008973e-01 nln_con2
 8.7142207939e-03 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [2.9814239700e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6998301774e-01] nln_con3 gradient

 1 1 1.0E+00 2 -2.46707673E+00 6.9E-01 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 3

Parameters for function evaluation 3:
 2.1407705098e+00 intake_dia
 1.7682646453e+00 flatness

(cyl_head /var/tmp/eaaa0010M /var/tmp/faaa0010M)
In cyl_head evaluator:
warranty = 133476
cycle_time = 60.0029
wall_thickness = 0.0616147
horse_power = 283.581
max_stress = 1811.18
Removing /var/tmp/eaaa0010M and /var/tmp/faaa0010M

Active response data for function evaluation 3:
Active set vector = { 3 3 3 3 }
 -2.4690845846e+00 obj_fn
 2.0745219855e-01 nln_con1
 -3.3476030320e-01 nln_con2
 4.9104542814e-05 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient

DAK ults 365

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 [1.4352331520e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6806368014e-01] nln_con3 gradient

Begin Function Evaluation 4

Parameters for function evaluation 4:
 2.1607040498e+00 intake_dia
 1.7242732458e+00 flatness

(cyl_head /var/tmp/gaaa0010M /var/tmp/haaa0010M)
In cyl_head evaluator:
warranty = 134136
cycle_time = 60.4487
wall_thickness = 0.051648
horse_power = 285.756
max_stress = 2399.55
Removing /var/tmp/gaaa0010M and /var/tmp/haaa0010M

Active response data for function evaluation 4:
Active set vector = { 3 3 3 3 }
 -2.4843831483e+00 obj_fn
 5.9970320968e-01 nln_con1
 -3.4135901313e-01 nln_con2
 7.4787762078e-03 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [2.6615351511e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6971201116e-01] nln_con3 gradient

 2 0 1.4E-01 4 -2.46179789E+00 6.0E-01 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 5

Parameters for function evaluation 5:
 2.1381718203e+00 intake_dia
 1.7683406996e+00 flatness

(cyl_head /var/tmp/iaaa0010M /var/tmp/jaaa0010M)
In cyl_head evaluator:
warranty = 133475
cycle_time = 60.0022
wall_thickness = 0.0629141

DAK ults 366

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
horse_power = 283.298
max_stress = 1757.23
Removing /var/tmp/iaaa0010M and /var/tmp/jaaa0010M

Active response data for function evaluation 5:
Active set vector = { 3 3 3 3 }
 -2.4679389967e+00 obj_fn
 1.7148906598e-01 nln_con1
 -3.3474889506e-01 nln_con2
 3.6322686164e-05 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [1.3341388781e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6806081643e-01] nln_con3 gradient

Begin Function Evaluation 6

Parameters for function evaluation 6:
 2.1523079940e+00 intake_dia
 1.7406938490e+00 flatness

(cyl_head /var/tmp/kaaa0010M /var/tmp/laaa0010M)
In cyl_head evaluator:
warranty = 133890
cycle_time = 60.2818
wall_thickness = 0.055846
horse_power = 284.84
max_stress = 2106.81
Removing /var/tmp/kaaa0010M and /var/tmp/laaa0010M

Active response data for function evaluation 6:
Active set vector = { 3 3 3 3 }
 -2.4782556582e+00 obj_fn
 4.0454151196e-01 nln_con1
 -3.3889592265e-01 nln_con2
 4.6970356970e-03 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [2.0246335086e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6909862055e-01] nln_con3 gradient

 3 0 3.7E-01 6 -2.45857429E+00 4.0E-01 0.0E+00 0 6.8E+00 F TF

DAK ults 367

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
Begin Function Evaluation 7

Parameters for function evaluation 7:
 2.1323270192e+00 intake_dia
 1.7684707504e+00 flatness

(cyl_head /var/tmp/maaa0010M /var/tmp/naaa0010M)
In cyl_head evaluator:
warranty = 133473
cycle_time = 60.0009
wall_thickness = 0.0658365
horse_power = 282.66
max_stress = 1649.15
Removing /var/tmp/maaa0010M and /var/tmp/naaa0010M

Active response data for function evaluation 7:
Active set vector = { 3 3 3 3 }
 -2.4653685666e+00 obj_fn
 9.9434951763e-02 nln_con1
 -3.3472938744e-01 nln_con2
 1.4466560964e-05 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [1.1381130512e+01 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805591946e-01] nln_con3 gradient

 4 0 1.0E+00 7 -2.46038884E+00 9.9E-02 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 8

Parameters for function evaluation 8:
 2.1235901936e+00 intake_dia
 1.7685568322e+00 flatness

(cyl_head /var/tmp/oaaa0010M /var/tmp/paaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0702049
horse_power = 281.707
max_stress = 1515.74
Removing /var/tmp/oaaa0010M and /var/tmp/paaa0010M

Active response data for function evaluation 8:
Active set vector = { 3 3 3 3 }
 -2.4615425280e+00 obj_fn

DAK ults 368

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 1.0493396662e-02 nln_con1
 -3.3471647517e-01 nln_con2
 1.4443046759e-10 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [9.0893472783e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267803e-01] nln_con3 gradient

 Maj Mnr Step Fun Merit function Violtn Norm gZ nZ Penalty Conv
 5 0 1.0E+00 8 -2.46101307E+00 1.0E-02 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 9

Parameters for function evaluation 9:
 2.1224357217e+00 intake_dia
 1.7685568330e+00 flatness

(cyl_head /var/tmp/qaaa0010M /var/tmp/raaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707821
horse_power = 281.581
max_stress = 1500.22
Removing /var/tmp/qaaa0010M and /var/tmp/raaa0010M

Active response data for function evaluation 9:
Active set vector = { 3 3 3 3 }
 -2.4610386667e+00 obj_fn
 1.4914647635e-04 nln_con1
 -3.3471647505e-01 nln_con2
 9.9882324633e-12 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [8.8325450545e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267800e-01] nln_con3 gradient

 6 0 1.0E+00 9 -2.46103129E+00 1.5E-04 0.0E+00 0 6.8E+00 F TF

Begin Function Evaluation 10

Parameters for function evaluation 10:

DAK ults 369

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 2.1224188357e+00 intake_dia
 1.7685568331e+00 flatness

(cyl_head /var/tmp/saaa0010M /var/tmp/taaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707906
horse_power = 281.579
max_stress = 1500
Removing /var/tmp/saaa0010M and /var/tmp/taaa0010M

Active response data for function evaluation 10:
Active set vector = { 3 3 3 3 }
 -2.4610312969e+00 obj_fn
 3.1248197141e-08 nln_con1
 -3.3471647503e-01 nln_con2
 -6.8171024381e-12 nln_con3
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [8.8288585865e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267799e-01] nln_con3 gradient

 7 0 1.0E+00 10 -2.46103130E+00 3.1E-08 0.0E+00 0 6.8E+00 T TF

Begin Function Evaluation 11

Parameters for function evaluation 11:
 2.1224188321e+00 intake_dia
 1.7685568331e+00 flatness

(cyl_head /var/tmp/uaaa0010M /var/tmp/vaaa0010M)
In cyl_head evaluator:
warranty = 133472
cycle_time = 60
wall_thickness = 0.0707906
horse_power = 281.579
max_stress = 1500
Removing /var/tmp/uaaa0010M and /var/tmp/vaaa0010M

Active response data for function evaluation 11:
Active set vector = { 3 3 3 3 }
 -2.4610312954e+00 obj_fn
 -5.3569115810e-10 nln_con1
 -3.3471647503e-01 nln_con2
 -6.8171024381e-12 nln_con3

DAK ults 370

S

D

P

OTA Manuals (6/11/99) Example Problems - Cylinder Head Example - Optimization Res

Cylinder
Head

Example

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 [-4.3644298963e-01 1.5000000000e-01] obj_fn gradient
 [8.8288578008e+00 0.0000000000e+00] nln_con1 gradient
 [0.0000000000e+00 1.5000000000e-01] nln_con2 gradient
 [0.0000000000e+00 -1.6805267799e-01] nln_con3 gradient

 8 0 1.0E+00 11 -2.46103130E+00 5.4E-10 0.0E+00 0 6.8E+00 T TT

 Exit NPSOL - Optimal solution found.

 Final nonlinear objective value = -2.461031

NPSOL exits with INFORM code = 0 (see p. 8 of NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
 for complete NPSOL iteration history.

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 11 total (11 new, 0 duplicate)
<<<<< Best design parameters =
 2.1224188321e+00 intake_dia
 1.7685568331e+00 flatness
<<<<< Best objective function =
 -2.4610312954e+00
<<<<< Best constraint values =
 -5.3569115810e-10
 -3.3471647503e-01
 -6.8171024381e-12
Run time from MPI_Init to MPI_Finalize is 1.6473130000e+00 seconds

DAKOTA Manuals (6/11 371

SEACAS
Library

DAKOTA
Manuals

Example
Problems

i Blue text
indicates

a link to more
information.

Te
Ex

Tra

GO

Ad
/99) Example Problems - Engineering Applications

Draft Version

Rosenbrock
Example

Illumination
Example

Cylinder
Head

Example

xtbook
ample

Engineering
Applications

Engineering Applications

nsportation Cask Example

MA/EXODUS Application Example

ditional References

DAK Example 372

E
Ap

S

D

P

e-processing, invocation
OTA Manuals (6/11/99) Example Problems - Engineering Applications - Transportation Cask

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Transportation Cask Example

In this example, use is made of C-shell scripting to coordinate pr
of analyses, and post-processing.

Work in progress

Alternate with workdir tagging: radar load spreader plate

DAK ion Example 373

E
Ap

S

D

P

ample

 jockey an introduction
de. In addition to
ssumed to have an
AN. Although many of

asily be written in

_book example:

(29)

10 and +10.

inue a section onto
 newline. Input is order-
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

GOMA/EXODUS Application Ex

This tutorial is designed to give an experienced GOMA/EXODUS
into tying the DAKOTA iterator toolkit to the GOMA simulation co
understanding GOMA and the EXODUS file format, the user is a
understanding of a programming language such as C or FORTR
the examples will be presented in C, the programs can just as e
FORTRAN.

Standard text_book example

Problem formulation:

The problem to be solved in this portion of the tutorial is the text

subject to simple bounds on the variables: x1 and x2 range between -

Dakota_sample.in problem description file:

Sections are delimited by newline characters. Therefore, to cont
multiple lines, the back-slash character is needed to escape the

f x 1 1–()4
x 2 1–()4

g1

+

x 1
2 x 2

2
------– 0

g2

≤

x 2
2

0.5– 0≤

=

=

=

DAK ion Example 374

E
Ap

S

D

P

reviated so long as the
tive resource for input
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
independent and white-space insensitive. Keywords may be abb
abbreviation is unique. Comments are preceded by #.The defini
grammar isDakota/src/dakota.input.spec .

DAKOTA INPUT FILE - dakota_textbook.in
Interface section specification
NOTES: Interfaces are 1 of 3 main types: application interfaces are used
for interfacing with simulation codes, approximation interfaces use
inexpensive design space approximations in place of expensive
simulations, and test interfaces use linked-in test functions for
algorithm testing purposes (to eliminate system call overhead).
Application interfaces can be further categorized into system and
direct types. The system type uses system calls to invoke the
simulation, while the direct type uses the same constructs as the test
interface for linked-in simulation codes. Both application interface
types use analysis_driver, input_filter, and output_filter
specifications. The system type additionally uses parameters_file,
results_file, analysis_usage, file_tag, and file_save specifications.
The analysis_driver provides the name of the analysis executable,
driver script, or linked module; the input_filter and output_filter
provide pre- and post-processing for the analysis in the procedure of
mapping parameters into responses (default = NO_FILTER); the
parameters_file and results_file are data files which Dakota creates
and reads, respectively, in the system call case (default = Unix temp
files); analysis_usage defines nontrivial command syntax (default =
standard syntax), file_tag controls the unique tagging of data files
with function evaluation number (default = no tagging), and file_save
controls whether or not file cleanup operations are performed (default
= data files are removed when no longer in use). Most settings are
optional with meaningful defaults as shown above. Refer to the
Interface Commands section in the User’s Instructions manual for
additional information.

interface,\
application system,\
 input_filter = ‘NO_FILTER’\
 output_filter = ‘NO_FILTER’\
 analysis_driver = ‘text_book’\
 parameters_file = ‘text_book.in’\
 results_file = ‘text_book.out’\
 analysis_usage = ‘DEFAULT’\
 file_tag\
 file_save

Variables specification
NOTES:A variables set can contain design, uncertain, and state variables.

DAK ion Example 375

E
Ap

S

D

P

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
Design variables are those variables which an optimizer adjusts in
order to locate an optimal design. Each of the n design parameters
can have an initial point, a lower bound, an upper bound, and a
descriptive tag. Uncertain variables are those variables which are
characterized by probability distributions. Each uncertain variable
specification can contain a distribution type, a mean, a standard
deviation, a lower bound, an upper bound, a histogram filename and a
descriptive tag. State variables are “other” variables which are to
be mapped through the interface. Each state variable specification
can have an initial state and a descriptor. State variables provide a
convenience mechanism for parameterizing additional model inputs, such
as mesh density, solver convergence tolerance and time step controls,
and will be used to enact model adaptivity in future strategy
developments.

variables,\
continuous_design = 2\
 cdv_initial_point 0.9 1.1\
 cdv_upper_bounds 5.8 2.9\
 cdv_lower_bounds 0.5 -2.9\
 cdv_descriptor ‘x1’ ‘x2’

Responses specification
NOTES: This specification implements a generalized Dakota data set by
specifying a set of functions and the types of gradients and hessians
for these functions. Optimization data sets require specification of
num_objective_functions, num_linear_constraints, and
num_nonlinear_constraints. Multiobjective opt. is not yet supported,
so num_objective_functions must be = 1. Uncertainty quantification
data sets are specified by num_response_functions. Nonlinear least
squares data sets are specified with num_least_squares_terms.
Gradient type specification may be no_gradients, analytic_gradients,
numerical_gradients or mixed_gradients:
> no_gradients is invalid with gradient-based opt. methods
> no_gradients or analytic_gradients are complete specifications
> if numerical_gradients, then:
>> method_source = vendor OR dakota
>> interval_type = forward OR cental
>> fd_step_size = <float>
are additional optional parameters in the specification.
> mixed_gradients uses id_numerical & id_analytic lists to specify
the gradient types for different function numbers. This capability
is not yet completely implemented within the Iterators.
Hessian type specification may currently be no_hessians or
analytic_hessians. The only optimizers to currently support
analytic_hessians are the OPT++ full Newton methods.

responses,\

DAK ion Example 376

E
Ap

S

D

P

s the responses directly;
e formatted based on the
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
num_objective_functions = 1\
num_linear_constraints = 0\
num_nonlinear_constraints = 2\
analytic_gradients\
no_hessians

Strategy specification
NOTES: Contains specifications for hybrid, SAO, and OUU strategies. The
single_method strategy is a “fall through” strategy, in that in only
invokes a single iterator. If no strategy specification appears, then
single_method is the default.

strategy,\
single_method

Method specification
NOTES: method can currently be dot_frcg, dot_mmfd, dot_bfgs, dot_slp,
dot_sqp, npsol_sqp, optpp_cg, optpp_q_newton, optpp_g_newton,
optpp_newton, optpp_fd_newton, optpp_ba_newton, optpp_baq_newton,
optpp_bc_newton, optpp_bcq_newton, optpp_bc_ellipsoid, optpp_pds,
optpp_test_new, sgopt_pga_real, sgopt_pga_int, sgopt_coord_ps,
sgopt_coord_sps, sgopt_solis_wets, sgopt_strat_mc, nond_probability,
nond_mean_value, or parameter_study. Most method control parameters
are optional with meaningful defaults, although sgopt_coord_ps,
sgopt_coord_sps, parameter_study, nond_probability, and
nond_mean_value have some required control parameters. Default values
for optional parameters are defined in the DataMethod class
constructor and are documented in the Method Commands section of the
User’s Instructions manual.

method,\
 dot_sqp,\

 max_iterations = 50,\
 convergence_tolerance = 1e-4\
 output verbose\
 optimization_type minimize

Simulator file text_book.C:

This simple application program reads the parameters and write
therefore, the NO_FILTER option is be used. The output must b
DakotaResponse IO operators.

#include <iostream.h>
#include <iomanip.h>

DAK ion Example 377

E
Ap

S

D

P

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
#include <fstream.h>
#include <math.h>
#include <rw/cstring.h>

#ifdef SYMANTEC
#include <console.h>
#endif

double eval(const double* x, int len);
int main(int argc, char** argv)
{
#ifdef SYMANTEC
 argc = ccommand(&argv);

 for(int num=0; num<argc; num++) {
 cout << argv[num] << “ “;
 }
 cout << ‘\n’;
#endif

 ifstream fin(argv[1]);
 ofstream fout(argv[2]);

 // Get the first line and use info for array allocation
 int num_vars, num_fns;
 RWCString vars_text, fns_text;
 fin >> num_vars >> vars_text >> num_fns >> fns_text;

 // Get the parameter vector and ignore the labels
 //vector<double> x(num_vars);
 double* x = new double [num_vars];
 int i;
 for(i=0; i<num_vars; i++) {
 fin >> x[i];
 fin.ignore(256, ‘\n’);
 }

 // Get the ASV vector and ignore the labels
 int* ASV = new int [num_fns];
 for(i=0; i<num_fns; i++) {
 fin >> ASV[i];
 fin.ignore(256, ‘\n’);
 }

 // Compute the results and output them directly to argv[2] (the NO_FILTER
 // option is used). Response tags are now optional; output them for ease
 // of results readability.

DAK ion Example 378

E
Ap

S

D

P

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 fout.precision(10);
 fout.setf(ios::scientific);
 fout.setf(ios::right);
 // **** f:
 if (ASV[0]==1 || ASV[0]==3 || ASV[0]==5 || ASV[0]==7)
 fout << “ “ << eval(x, num_vars) << “ f\n”;

 // **** c1:
 if (num_fns>1) {
 if (ASV[1]==1 || ASV[1]==3 || ASV[1]==5 || ASV[1]==7)
 fout << “ “ << (x[0]*x[0] - 0.5*x[1]) << “ c1\n”;
 }

 // **** c2:
 if (num_fns>2) {
 if (ASV[2]==1 || ASV[2]==3 || ASV[2]==5 || ASV[2]==7)
 fout << “ “ << (x[1]*x[1] - 0.5) << “ c2\n”;
 }

 // **** df/dx:
 if (ASV[0]==2 || ASV[0]==3 || ASV[0]==6 || ASV[0]==7) {
 fout << “[“;
 for (i=0; i<num_vars; i++)
 fout << 4.*pow(x[i]-1,3) << “ “;
 fout << “]\n”;
 }

 // **** dc1/dx:
 if (num_fns>1) {
 if (ASV[1]==2 || ASV[1]==3 || ASV[1]==6 || ASV[1]==7) {
 fout << “[“ << 2.*x[0] << “ “ << -0.5;
 for (i=3; i<=num_vars; i++)
 fout << “ “ << 0.0;
 fout << “]\n”;
 }
 }

 // **** dc2/dx:
 if (num_fns>2) {
 if (ASV[2]==2 || ASV[2]==3 || ASV[2]==6 || ASV[2]==7) {
 fout << “[“ << 0.0 << “ “ << 2.*x[1];
 for (i=3; i<=num_vars; i++)
 fout << “ “ << 0.0;
 fout << “]\n”;
 }
 }

 // **** d^2f/dx^2: (full Newton unconstrained opt.)

DAK ion Example 379

E
Ap

S

D

P

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 if (ASV[0]>=4) {
 fout << “[[“;
 for (i=0; i<num_vars; i++)
 for (int j=0; j<num_vars; j++)
 if (i==j)
 fout << 12.*pow(x[i]-1,2) << “ “;
 else
 fout << 0. << “ “;
 fout << “]]\n”;
 }

 // **** d^2c1/dx^2: (ParamStudy testing of multiple Hessian matrices)
 if (num_fns>1) {
 if (ASV[1]>=4) {
 fout << “[[“;
 for (i=0; i<num_vars; i++)
 for (int j=0; j<num_vars; j++)
 if (i==0 && j==0)
 fout << 2. << “ “;
 else
 fout << 0. << “ “;
 fout << “]]\n”;
 }
 }

 // **** d^2c2/dx^2: (ParamStudy testing of multiple Hessian matrices)
 if (num_fns>2) {
 if (ASV[2]>=4) {
 fout << “[[“;
 for (i=0; i<num_vars; i++)
 for (int j=0; j<num_vars; j++)
 if (i==1 && j == 1)
 fout << 2. << “ “;
 else
 fout << 0. << “ “;
 fout << “]]\n”;
 }
 }

 fout << flush;
 delete [] x;
 delete [] ASV;

 return 0;
}

//double eval(const vector<double>& x)
double eval(const double* x, int len)

DAK ion Example 380

E
Ap

S

D

P

. Parameters and results
ecutable and file tagging
e parameters and results
 application developer,
e names and improve
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
{
 double value=0;

 for(int i=len; i--;) {
 value += pow(x[i]-1, 4);
 }

 return value;
}

Invokation of text_book:

The command syntax which DAKOTA will use is as shown below
file names will be passed on the command line to the specified ex
will be employed to keep the file names unique. The names of th
files are passed on the command line for the convenience of the
since these arguments can be used to remove hard coding of fil
generality:

text_book text_book.in.1 text_book.out.1

The text_book.in.1 parameters file is:
 2 variables 3 functions
 9.0000000000e-01 x1
 1.1000000000e+00 x2
 1 ASV_1
 1 ASV_2
 1 ASV_3

and the text_book.out.1 results files is:
 2.0000000000e-04 f
 2.6000000000e-01 c1
 7.1000000000e-01 c2

Results:

DAK ion Example 381

E
Ap

S

D

P

l function evaluations

ode. The method used
hod DAKOTA makes
valuation is given to the
forms separate system
t order, to evaluation of
escribed here, the
C programs and a
ability.

files and how the different
pecifies control
e variables and response
esign variables, their
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
The dot_sqp method converges to the optimal solution in 17 tota
when foward finite differences are used

<<<<< Single method iteration completed.
<<<<< Function evaluation summary: 17 total (16 new, 1 duplicate)
<<<<< Best design parameters =
 5.9442052455e-01 x1
 7.0668310706e-01 x2
<<<<< Best objective function =
 3.4460496673e-02
<<<<< Best constraint values =
 -5.7935237028e-06
 -5.9898619602e-04

Example text_book recast in GOMA format: Filter Introduction

There are several ways of interfacing DAKOTA with a simulation c
here applies DAKOTA’s 1-piece Interface capability. For this met
one system call per function evaluation and all control over the e
user. DAKOTA also has a 3-piece Interface capability which per
calls for the input filter, simulation code, and the output filter, in tha
the cost function and constraints. In the optimization problems d
evaluation of the cost function is performed by a combination of
supervisory UNIX shell program using the 1-piece Interface cap

Figure 1 outlines how variables and response data are passed as
codes interact. A DAKOTA input file (e.g.,dakota_sample.in) s
parameters for the DAKOTA optimization run such as names of th
file params.in andresults.out , respectively, the number of d

DAK ion Example 382

E
Ap

S

D

P

constraints and how

filearams.in . This
t vector code
, and/or the Hessian
 by the user’s shell

t does is execute

ntified in file
his file is “included”
A is then run and an
 then reads the
 function and the value of
eadable format.
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
bounds and initial values, information concerning the number of
gradients are calculated, and the optimization method desired.

Just prior to requesting a function evaluation, DAKOTA writes thep
file contains the current values of the design variables and anactive se
request for values of the function and constraints, their gradients
matrix. DAKOTA then spawns a system call andparams.in is read
programcost.sh . The shell program is fairly simple in that all i
in_filt.c , GOMA, andout_filt.c in the appropriate order.

The input filter program,in_filt.c , places design variables ide
params.in into a file that is formatted for use by APREPRO. T
into the mesh generator file or into the GOMA input deck. GOM
EXODUS file is generated. The output filter program,out_filt.c ,
EXODUS file, extracts the necessary results, computes the cost
the constraints, and then writes the fileresults.out in DAKOTA r

in_filt.c out_filt.cMesh/GOMA

DAKOTAparams.in results.out

cost.sh

Figure 1. DAKOTA interface scheme

DAK ion Example 383

E
Ap

S

D

P

ral format. The input
A skeleton output filter
t functions and the

provided.

rial, and will be recast
lation, as before, is

(30)

tween -10 and +10.

will depend on the

t_filt.c ,
e DAKOTA input
ands:

set up. A slash, at
 immediately before any
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
The programsin_filt.c andout_filt.c are written in a gene
filter can be run without any modification in most optimizations.
is provided that only requires the subroutines to evaluate the cos
constraints. The code for writing the fileresults.out file is also

DAKOTA Filter Tutorial
Thetext_book example will be revisited in this portion of the tuto
in the form used by the GOMA applications. The problem formu

subject to simple bounds on the variables:x1 andx2 which range be

The following steps are used to generate a 3-piece interface.

1. Change directories into the “tutorial” directory (this location
course you are taking and how you installed your software).

2. You will notice the directory contains five files:in_filt.c , ou
dak_goma.h , cost.sh , andtut.in . The filetut.in is th
specification as discussed earlier. Issue the following comm

more tut.in

The first part of the file defines how the DAKOTAinterface is
the end of a line signifies a continuation. It must be present

f x 1 1–()4
x 2 1–()4

g1

+

x 1
2 x 2

2
------– 0

g2

≤

x 2
2

0.5– 0≤

=

=

=

DAK ion Example 384

E
Ap

S

D

P

.g.terface ,
 the parser detects
ed for readability must
 set up to be named
ted in the file

mmand

fore be coded with

\
\

o design variables,x1

nge between -10 and

\
\

ints and the source of the
A, the gradients are

\
\

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
carriage return prior to the end of a keyword specification (ein
method , variables ,...) This syntax is necessary because
keyword input completion with a newline, so newlines enter
be escaped with a ‘\’. Note that the communication files are
params.in andresults.out . The cost function is evalua
cost.sh , which is called whenever DAKOTA issues the co

cost.sh params.in results.out

to the operating system. The shell functioncost.sh must there
this in mind (as we will see next).

interface,
 application system,
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver= ‘cost.sh’ \
 parameters_file= ‘params.in’ \
 results_file= ‘results.out’ \
 analysis_usage = ‘DEFAULT’

Next, the design variables are set up. Note that there are tw

andx2, and the starting point is (2, 2). Each variable may ra

+10.
variables,
 continuous_design = 2
 cdv_initial_point 2.0 2.0\
 cdv_upper_bounds 10.0 10.0\
 cdv_lower_bounds -10.0 -10.0\
 cdv_descriptor ‘x1’ ‘x2’

The response specification describes the number of constra
gradients. In this problem and in the problems utilizing GOM
calculated using a forward difference scheme:

responses,
 num_objective_functions = 1

DAK ion Example 385

E
Ap

S

D

P

\
\

\

d.

 evaluation. This

ntified in file
take the file
s.out . The
cute correctly. The
t and the second
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 num_linear_constraints = 0
 num_nonlinear_constraints = 2
 numerical_gradients

method_source vendor \
interval_type forward \
fd_step_size = 0.001 \

 no_hessians

The last portion selects the optimization technique to be use
method, \
 dot_sqp, \

max_iterations = 50, \
convergence_tolerance = 1e-8 \
output verbose \
optimization_type minimize

3. Now execute the command:
more cost.sh

This file is the supervisory file that controls the cost function
simple example has no GOMA evaluation.

#! /bin/csh -f
#
This shell file evaluates the cost function
for a dakota run
#
in_filt $argv[1] out.app

GOMA run goes here!!

out_filt $argv[1] $argv[2]

The input filter,in_filt.c , places the design variables ide
params.in into a file,out.app . The fileout_filt.c will
out.app and evaluate the cost function then write the fileresult
first line of the filecost.sh is necessary for the shell to exe
variables$argv[1] and$argv[2] refer to the first argumen
argument in the call statement.

DAK ion Example 386

E
Ap

S

D

P

ototypes the functions

s error checking on
.in for reading
the filtering operation,
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
4. Now look at the input filter using the command:

more in_filt.c

The first portion of the file sets up various definitions and pr
used in the program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

void input_filter(FILE *input_file, FILE *param_file);

The program is controlled frommain() . This routine perform
the number of arguments used to call the program, opensparams
andout.app for writing and calls the subroutine to perform
input_filt() .

void main(int argc,char *argv[])
 {

 FILE *input_file, *param_file;

 if (argc<2)
 {
 printf(ÒNeed an output filename, exiting\nÓ);
 exit(-1);
 }

 if ((input_file=fopen(argv[1],ÓrÓ)) == NULL)
 {
 printf(ÒCouldnÕt open file: %s exiting.\nÓ,argv[1]);
 exit(-1);
 }

 param_file=fopen(argv[2],ÓwÓ);

 input_filter(input_file, param_file);
 exit(0);

DAK ion Example 387

E
Ap

S

D

P

ariables (n_param)
ach of the design
V for the function and

ut filter since only
 this problem is

utine. It just reads
ve paragraph.
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 }

The first line ofparams.in specifies the number of design v
and a string (tag). The nextn_param lines are the value of e
variables with an identification tag. The last lines are the AS
each of the constraints. The ASV can be ignored in this inp
function values will be returned. The initialparams.in file for
listed below:

 2 variables 3 functions
 2.0000000000e+00 x1
 2.0000000000e+00 x2
 1 ASV_1
 1 ASV_2
 1 ASV_3

The last portion of the filein_filt.c is the input filter subro
params.in and writesout.app using the format in the abo

void input_filter(FILE *input_file, FILE *param_file)
{
int i, n_param,n_g;
float dum_param;
char tag1[10],tag2[10];

fscanf(input_file,”%d %s %d %s”,&n_param,tag1,&n_g,tag2);

for (i=0;i<n_param;i++)
 {
 fscanf(input_file,”%f %s”,&dum_param,tag1);
 fprintf(param_file,”#{%s = %f}\n”,tag1,dum_param);
 }
}

The contents of the fileout.app will look something like:
#{x1 = 2.000000}
#{x2 = 2.000000}

You will recognize this as input for APREPRO.

DAK ion Example 388

E
Ap

S

D

P

ads an EXODUS
p will represent
 within_filt.c ,
ning code.

filter process as with
re the correct number
esults.out are
am and will be discussed
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
5. The final file is the output filter (out_filt.c). Normally, it re

file to get the results of a GOMA run. In this case, the fileout.ap
the EXODUS file to simplify the description of the filters. As
the first lines set up definitions and prototypes for the remai

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define NUM_PARAM 2
#define MAX_LINE 80

float cost_fun(FILE *exoid);

float *asv_read(FILE *input_file,int *n_param, int *n_g, int **asv);

void output_filter(int *asv, int n_param, float *params, int n_g, FILE
*output_file);

Themain() routine inout_filt.c once again controls the
in_filt.c . First some error checking is performed to insu
of arguments are being passed. Next the filesparams.in and r
opened. The remaining functions are the meat of the progr
next.

int main(int argc,char *argv[])
{

int *asv, n_param,i, n_g;
float *params;
FILE *input_file, *output_file;

if (argc<3)
{
 printf(“Need both input and output files specified, exiting \n”);
 exit(-1);
}

input_file=fopen(argv[1],”r”);

DAK ion Example 389

E
Ap

S

D

P

ing the ASV
he program to correctly
meters to be available
y[] and the array
ith thecalloc()

his subroutine
the constraints,
ost function is
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
output_file=fopen(argv[2],”w”);

params=asv_read(input_file,&n_param,&n_g,&asv);

output_filter(asv, n_param, params, n_g, output_file);

exit(0);
}

The subroutineasv_read() reads theparams.in file return
information and the values of the parameters. This allows t
determine what DAKOTA is requesting and to allow the para
for the cost function and the constraint evaluation. The arraasv
params[] are alloced inasv_read() . This is done here w
statement.

float *asv_read(FILE *input_file, int *n_param, int n_g, int **asv)
{
 int i;
 char junk1[MAX_LINE],junk2[MAX_LINE];
 float *params;

 fscanf(input_file,Ó%d %sÓ,n_param,junk1,n_g,junk2);
 *n_g = *n_g - 1;

 params= (float *)calloc(*n_param, sizeof(float));
 *avs=(int *)calloc(*n_g +1, sizeof(int));

 for (i=0;i<*n_param;i++) fscanf(input_file,Ó%f %s\nÓ,¶ms[i], junk);

 for (i=0;i<=*n_g;i++)
 {
 fscanf(input_file,Ó%d %s\nÓ,&(*asv)[i],junk1);
 }
 fclose(input_file);
 return(params);
}

The next subroutine is the actual output filter (out_filt.c). T
opens the EXODUS file (in this caseout.app) and evaluates
g[n_g] and the cost function,J_cost . In this example the c

DAK ion Example 390

E
Ap

S

D

P

st combinations of the
 the ASV to be sure that
ients and Hessians that
sults.out file with the
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
evaluated using the routinecost() and the constraints are ju
parameters. The remaining code preforms error checks on
the DAKOTA input specification is correct as far as the grad
can be provided by the output filter. It also writes out the re
appropriate information.

void output_filter(int *asv, int n_param, float *params, int n_g, FILE
 *output_file)
{
 int i;
 float J_cost;
 float *g;
 FILE *exoid;

 g=(float *)calloc(n_g ,sizeof(float));

 exoid=fopen(Òout.appÓ,ÓrÓ);
/* determine cost function and constraints*/

 g[0] = params[0]*params[0] - params[1]/2.;
 g[1] = params[1]*params[1] -0.5;

 J_cost = cost_fun(exoid);

 /* write dakota output file */

 if (asv[0]>3)
 {
 printf(ÒHessian is not available, exiting\nÓ);
 exit(-1);
 }

 if (asv[0]>2)
 {
 printf(ÒGradient is not available, exiting\nÓ);
 exit(-1);
 }

 if (asv[0]==1 || asv[0]==3 ||asv[0]==5)
 {
 fprintf(output_file,Ó%g f\nÓ,J_cost);
 }

 for (i=1;i<=n_g;i++)

DAK ion Example 391

E
Ap

S

D

P

is routine is
he parameters through a

te a command similar

on, issue the command:
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 {
 if (asv[i]==1 || asv[i]==3 || asv[i]==5)
 fprintf(output_file,Ó%g c%d\nÓ,g[i-1], i);
 else
 {
 printf(ÒNumber of parameters is probably wrong: exiting.\nÓ);
 exit(-1);
 }
 }

 free(g);
}

The final routine evaluates the cost function. In this case, th
exceptionally simple. It just reads the file out.app and runs t
formula:

float cost_fun(FILE *exoid)
{
int i;
float x[NUM_PARAM], J_cost, a, b;
char cdum[2];

for (i=0;i<NUM_PARAM;i++)
 {
 fscanf(exoid,”#{%s = %f}\n”,cdum,&x[i]);
 printf(“ x[%d] = %g \n”,i,x[i]);
 }

a=(x[0]-1.);
b=(x[1]-1.);

J_cost = a*a*a*a + b*b*b*b;

return J_cost;
}

6. To compile a program with EXODUS subroutines in it, excu
to:

 cc -o in_filt in_filt.c -lexoIIv2c -lnetcdf -lnsl -lm

7. Now the optimization can be run. To execute the optimizati
dakota -i tut.in

DAK ion Example 392

E
Ap

S

D

P

xample problem that you
oesn’t change at all, and
e problem that is being
e dimensional problem
tration ofsolvent 0 at
sign variable is the oven

OTA. The specification
nalysis driver:
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
Wait until the thing finishes and enjoy the results.

Dryer Design Example
This section presents an extension of the tutorial problem to an e
care about. The shell program changes trivially, the input filter d
only the cost function evaluation changes in the output filter. Th
solved is the multilayer drying problem shown in Figure 2. The on
has two solvents and a substrate. The cost function is the concen
the end of the simulation, which for this case is 200 sec. The de
temperature, which has a constraint of 370K to prevent boiling.

Dryer Design Tutorial:

1. There are a few differences in the input specification to DAK
is in dryer.in . The first is the change in the name of the a

analysis_driver= ‘dryer.sh’

The variable description also changes:

Solvent 1

Solvent 0

Substrate

T_inf T_init

Figure 2 Drying Problem setup

DAK ion Example 393

E
Ap

S

D

P

er of constraints must be

d above except for

can be seen from
his file is read by the
nclude statement at

to you in your
ith it.
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
variables, \

 continuous_design = 1 \
 cdv_initial_point 300.0 \
 cdv_upper_bounds 600.0 \
 cdv_lower_bounds 0. \
 cdv_descriptor ‘T_inf’

The final change is in the responses section. Here the numb
changed to reflect the current problem:

num_nonlinear_constraints = 1 \

2. The shell functiondryer.sh is identical tocost.sh describe
the GOMA evaluation. To look at the file execute:

more dryer.sh

The file looks like
#! /bin/csh -f
#
#This shell file evaluates the cost function
#for a dakota run
#
in_filt $argv[1] dryer.app

goma -a -i ml_input -se stderr -so stdout

dryer $argv[1] $argv[2]>>& goma.src

3. The input filter is identical. To check this execute:
more in_filt.c

Note that the output of the input filter is the filedryer.app as
the filedryer.sh , which contains the oven temperature. T
GOMA input fileDefs.app . Check this file now to see the i
the top of the file.

4. The simulation is identical to the templatedryer.ml provided
distribution. If you are not familiar with it, become familiar w

DAK ion Example 394

E
Ap

S

D

P

blem. Only the cost
s as it was described
header.

at is generated by
e substrate (node 8).

function
cessary variables, the
 provided subroutine:

);

DUS users manual

 Now the cost
. After some
 from the database and
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
5. The major changes are in the output filter,dryer.c for this pro

function evaluation will be discussed. The remaining code i
above. Any variables in all capital letters are defined in the

The cost function requires interrogating the EXODUS file th
GOMA for the concentration of the solventY0 at a node near th
Open the filedryer.c by executing:

emacs dryer.c

Move the cursor down to the portion of the code where the
output_filter() is defined. After the definition of the ne
first line of code opens the EXODUS file using an EXODUS

/* page 25 of SAND92-2137 */
/* Open file */

 CPU_word_size=sizeof(float);
 IO_word_size=0;

 exoid=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version

Note that the comments give the reference page in the EXO
which is available on-line athttp://sass577.endo.sandia.gov/
SEACAS/SEACAS.html

Theexoid output is used to reference the file. It is of typeint .
functioncost_fun() is called with the argument beingexoid
variable definitions, the number of variables are determined
the array for the variable names is set up:

/* page 133 of SAND92-2137 */

error=ex_get_var_param(exoid,”n”,&num_nodal_var);

for (i=0;i<num_nodal_var;i++)

DAK ion Example 395

E
Ap

S

D

P

 appropriate variable,Y0,
e by their index and this
ry.

ys to hold all the time
de 8 are allocated. The

 value of the
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 var_names[i] = (char *) calloc((MAX_STR_LNG+1),sizeof(char));

Next, the variable names are extracted and the index of the
is determined. The variables are referenced in the databas
will be needed when extracting the concentration time histo

/* page 137 of SAND92-2137 */
error=ex_get_var_names(exoid,”n”,num_nodal_var,var_names);

/* find the velocity variables */

for (i=0;i<num_nodal_var;i++)
 {
 if (strcmp(CONC,var_names[i])==0) CONC_var_index=i+1;
 }

Next, the number of time steps are determined and the arra
step values and the values of the concentration history at no
array times will contain the time axis.

/* page 41 of SAND92-2137 */
/* determine number of time steps and use the last one */
error=ex_inquire(exoid,EX_INQ_TIME,&num_time_steps,&fdum,cdum);

concentration = (float *) calloc(num_time_steps,sizeof(float));
times = (float *) calloc(num_time_steps,sizeof(float));

/* page 143 of SAND92-2137 */
error = ex_get_all_times(exoid,times);

Now the concentration history at node 8 is read and the last
concentration is used for the cost function

/* page 167 of SAND92-2137*/

error = ex_get_nodal_var_time(exoid, CONC_var_index,NODE,1,

num_time_steps,concentration);
printf(“ %g %g \n”,concentration[0],concentration[num_time_steps-1]);
J_cost=concentration[num_time_steps-1];

DAK ion Example 396

E
Ap

S

D

P

ute a command similar

between DAKOTA and
y using the same cost
e solvent at the substrate
 oven temperature,

\
\

\
\

\

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
6. To compile a program with EXODUS subroutines in it, exec

to:
cc -o in_filt in_filt.c -lexoIIv2c -lnetcdf -lnsl -lm

7. To run the simulation, just type:
dakota -i dryer.in

8. Sit back and watch it run.

Dryer Parameter Study in Fortran:

This section will go through an example of a FORTRAN interface
GOMA. The example will be a multi-dimensional parameter stud
function as the previous example, namely the concentration of th
at the end after 200 sec. The two variables that will vary are the
T_inf , and the convection coefficient,Kh.

1. The input specification,dryer.in , for DAKOTA is as follows:
interface,

application system,
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver= ‘dryer.sh’ \
 parameters_file= ‘params.in’\
 results_file= ‘results.out’\
 analysis_usage = ‘DEFAULT’

variables,
continuous_design = 2
 cdv_initial_point 300.0 -50 \
 cdv_upper_bounds 600.0 -50\
 cdv_lower_bounds 0. 0\
 cdv_descriptor ‘T_inf’ ‘Kh’

responses,

DAK ion Example 397

E
Ap

S

D

P

\
\
\

\

\

d in the previous

e simulation and
 has been discussed in

one written in C. It is
d therefore the files read
perative that the files
d in the dakota input
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
num_objective_functions = 1
num_linear_constraints = 0
num_nonlinear_constraints = 1
no_gradients
no_hessians

strategy,
single_method

method, \
 multidim_parameter_study\

partitions = 10 10

The main difference between this file and the ones discusse
examples is thevariables section and themethod section.

The next file necessary is the shell filedryer.sh which runs th
controls the cost function evaluation. It is pretty simple and
both the previous examples:

#! /bin/csh -f
#
#This shell file evaluates the cost function
#for a dakota run
#
in_filt

goma -a -i ml_input -se stderr -so stdout

dryer

2. The input filter in FORTRAN is a little less general than the
not easy to pass command line arguments in FORTRAN an
and written by the input filter have to be hard coded. It is im
coded to be read in the input filter are identical to those use

DAK ion Example 398

E
Ap

S

D

P

not be used, nor
ts file.

described. As with
 the generality of the
ate subroutines in the
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
specification. This means thatfile_tag andfile_save can
can the default file names for the parameter file or the resul

 program in_filt
c
c This is a poor man’s version of
c the c program in_filt.c
c LEARN C!!!
c

 integer i, nparam, nfun
 real dparam
 character*10 tag, junk

 open(22,file=’params.in’,status=’old’)
 open(33,file=’dryer.app’,status=’unknown’)

 read(22,*) nparam, tag, nfun, junk

 do 10 i=1, nparam
 read(22,*) dparam,tag
 write(33,’(1x,a2,a10,a1,f16.8,a1)’) "#{",tag,"=",dparam,"}"
 10 continue

 end

3. The function that evaluates the cost function,dryer.f , is now
the input filter the filenames have to be hard coded, limiting
code. The main program does little except call the appropri
appropriate order

 program dryer
 include ‘/usr/local/inc/exodusII.inc’
 character*12 infile, outfile
 integer asv(3), nparam, ng
 real params(2)

 infile = ‘params.in’
 outfile = ‘results.out’

 call asvrd(infile, nparam, ng, asv, params)

 call outfilt(asv, nparam, params, ng, outfile)

DAK ion Example 399

E
Ap

S

D

P

s.in , and

ase and controls the
s a lot of checks to
AKOTA asks for
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 stop
 end

The first subroutine,asvrd() , reads the parameters file,param
determines the values of the parameters and the ASV

 subroutine asvrd(infile, nparam, ng, asv, params)
 character*12 infile
 character*50 junk, junk1
 integer i, nparam, ng, asv(3)
 real params(2)

 open(unit=22, file=infile, status=’old’)

 read(22,*) nparam, junk, ng, junk1
 ng=ng-1

 do 10 i=1,nparam
 read(22,*) params(i), junk
 10 continue

 do 20 i=1,ng+1
 read(22,*) asv(i), junk
 write(*,*) asv(i), junk
 20 continue

 close(22)
 end

The next subroutine,outfilt() , opens the EXODUS datab
writing of the file,results.out for DAKOTA to read. It doe
make sure that the function values and their gradients that D
through the ASV are, in fact, available

 subroutine outfilt(asv, nparam, params, ng, outfile)
 include ‘/usr/local/inc/exodusII.inc’
 integer asv(3), i, nparam, ng
 real params(2)
 character*12 outfile
 real J_cost, g(2)

 integer cpu_ws, exopen, exread, io_ws, idexo, ierr

DAK ion Example 400

E
Ap

S

D

P

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 real vers

 cpu_ws=0
 io_ws=0

c page 25 of SAND92-2137

 idexo = EXOPEN ("out.exoII", EXREAD, cpu_ws, io_ws, vers, ierr)

 g(1) = params(1) - 370.0

 J_cost = costf(idexo)

 open(unit=33, file=outfile, status=’unknown’)

 if (asv(1) .gt. 3) then
 write(*,*) ‘Hessian is not available, exiting ‘
 call exit(0)
 endif

 if (asv(1) .gt. 2) then
 write(*,*) ‘Gradient is not available, exiting ‘
 call exit(0)
 endif

 if (asv(1) .eq. 1 .or. asv(1) .eq. 3 .or. asv(1) .eq. 5) then
 write(33,*) J_cost, ‘ f’
 endif

 do 30 i=1,ng

 if (asv(i) .gt. 3) then
 write(*,*) ‘Hessian is not available, exiting ‘
 call exit(0)
 endif

 if (asv(i) .gt. 2) then
 write(*,*) ‘Gradient is not available, exiting ‘
 call exit(0)
 endif

 if (asv(i) .eq. 1 .or. asv(i) .eq. 3 .or. asv(i) .eq. 5) then
 write(33,*) g(i), ‘ g1’
 write(*,*) g(i)
 endif

 30 continue

DAK ion Example 401

E
Ap

S

D

P

alue of the solvent at
es a lot of calls from the
US reference guide are
d to reference the
rom.

ase

ne is the one of interest.
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 end

The last function,costf() , calculates determines what the v
the substrate is at the end of the simulation (200 sec). It us
EXODUS subroutine library and page numbers in the EXOD
give to facilitate reading the code. The variable exoid is use
EXODUS database file that the GOMA results will be read f

 real function costf(idexo)
 include ‘/usr/local/inc/exodusII.inc’
 integer cvarind, extims, i, idexo, ntime, nvar, ierr

 real redum, time
 real time(500), concen(500)
 character*(MXSTLN) vname(20)
 character cdum

First, we need to know how many variables are in the datab
c page 133 SAND92-2137

 call EXGVP(idexo, "n", nvar, ierr)

c page 137 SAND92-2137

Next, we read the variable’s names in and determine which o
In this case we are interested inY0.

 do 40 i=1,nvar
 if (vname(i) .eq. "Y0") then
 cvarind = i
 endif
 40 continue

Now we find out how many time steps are in the database
c page 41 of SAND92-2137

DAK ion Example 402

E
Ap

S

D

P

e last one, then close

 in it, execute a

OTA. There are two
s to set the relaxation
tion. By relying on
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 call EXINQ(idexo, EXTIMS, ntime, redum, cdum, ierr)
c page 144 of SAND92-2137

 call EXGATM(idexo, time, ierr)

Finally we read in all the values ofY0 through time and take th
the file

c page 167 of SAND92-2137

 call EXGNVT(idexo, cvarind, 8, 1, ntime, concen, ierr)

 costf=concen(ntime)

c page 27 of SAND92-2137

 call EXCLOS(idexo,ierr)
 return
 end

4. To compile a FORTRAN program with EXODUS commands
command similar to:

f77 -o dryer dryer.f -lexoIIv2for -lexoIIv2c -lnetcdf -lnsl

5. To run the simulation, just type
dakota -i dryer.in

6. Sit back and watch it run.

Slot Coater Example

The slot coater example utilizes the failure capture option in DAK
ways to insure a solution throughout the optimization: The first i
schedule very conservatively and the other is to rely on continua

DAK ion Example 403

E
Ap

S

D

P

timization, there was no

. Only the gap and the
 the starting point of the

vailable on University
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
continuation, the optimization runs significantly faster. In this op
relaxation used.

The parameterization used for this example is shown in Figure 3
angle a were used in the optimization. The parameters used for
optimization were taken from

Sator (1990),Slot Coating, PhD. Thesis University of Minnesota, A
Microfilms, Ann Arbor, Michigan.

The cost function used for this optimization is

1
2 3

4

5 6

Gap

h1 h2 h3

α L1
L2

S1

S2

7 8 9 10

L3

11 12

13 14

15

16
1718

Figure 3 Slot coat parameterization

DAK ion Example 404

E
Ap

S

D

P

(31)

d the angleα. The cost
t of the dynamic contact

e DAKOTA input
n problems so far
ddition of the failure
calledslot.in . The
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

The design variable, as it is currently set up, is the gap length an
function was choosen to minimize the sensitivity of the movemen
line to changes in the webspeed or the back pressure.

Slot Coater Tutorial:

1. As with all the examples before, the first file necessary is th
specification. This example is identical to all the optimizatio
except for the specification of the design variables and the a
capture command in the interface specification. The file is
changed portions of the specification for this problem is

interface, \
 application system, \
 input_filter = ‘NO_FILTER’ \
 output_filter = ‘NO_FILTER’ \
 analysis_driver= ‘slot.sh’ \
 parameters_file= ‘params.in’ \
 results_file= ‘results.out’ \
 analysis_usage = ‘DEFAULT’ \
 failure_capture continuation

######
variables, \
 continuous_design = 2 \
 cdv_initial_point 0.05 0.0\
 cdv_upper_bounds 0.07 0.2\
 cdv_lower_bounds 0.035 -0.2\
 cdv_descriptor ‘Gap_new’ ‘alpha_new’

J
28.5
0.02

uweb∂

∂
x dcl()

2850
0.01

Pvac∂

∂
x dcl()+=

0.35 Gap<0.7<
0.2 α 0.2< <–

DAK ion Example 405

E
Ap

S

D

P

ut filters.

outinesmain()
lter() has
here has been add to
tatus of the GOMA

ed)

 input file

 to last and the last

e values. The
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
2. The C-shell file,slot.sh , should look pretty familiar also

#! /bin/csh -f
#
This shell file evaluates the cost function
for a dakota run
#
in_filt $argv[1] slot.app

goma -a -i slot_input -se stderr -so stdout

slot $argv[1] $argv[2]

3. The input filterin_filt.c is identical to all the previous inp

4. The major difference is in the cost function,slot.c . The subr
andasv_read() are the same. However, the routineoutput_fi
been changed to incorporate a failure capturing scheme. T
GOMA four global variables that indicate the convergence s
simulation. They are:

• CONVBoolean convergence (1=> converged, 0=> not converg

• NEWT_ITNumber of Newton Iterations specified in the GOMA

• MAX_ITNumber of Newton Iterations taken by the simulation

• CONVRATEThe log10 relative convergence rate at the second
iteration taken

The subroutine converge inslot.c takes care of reading thes
subroutineout_filt look like

void output_filter(int *asv, int n_param, double *params, int n_g,
 FILE *output_file)

{
 char filename[]=GOMA_FILE;
 int CPU_word_size, IO_word_size;

DAK ion Example 406

E
Ap

S

D

P

 EXODUS file is
didn’t converge, a failure
verge but it ran out of
ed so the shell program
, then it writes the

);
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 float version;
 int exoid, i;
 double J_cost;
 double *g;
 int newt_it, max_it,error;
 double convrate;

 g=(double *)calloc(n_g ,sizeof(double));

/* page 25 of SAND92-2137 */
/* Open file */

 CPU_word_size=sizeof(double);
 IO_word_size=0;

This section of the code is the most different. Note how the
opened, then the convergence is checked. If the simulation
is flagged and the program exits. If the simulation didn’t con
newton iterations, then the program exits and a “1” is return
can rerun GOMA (not yet implemented). If it has converged
results.out file as before.

 exoid=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&version

 error = converge(exoid, &max_it, &newt_it, &convrate);

 if (!error) {
 /* determine cost function and constraints*/

 system("cp soln.dat contin.dat");

 g[0] = - 0.5e-4;
 J_cost = cost_fun(exoid);

 J_cost=J_cost*J_cost;

 printf("J= %g\n",J_cost);

 /* write dakota output file */

 if (asv[0]>3) {
 printf("Hessian is not available, exiting\n");
 exit(-1);

DAK ion Example 407

E
Ap

S

D

P

variables from the
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 }

 if (asv[0]>2) {
 printf("Gradient is not available, exiting\n");
 exit(-1);
 }

 if (asv[0]==1 || asv[0]==3 ||asv[0]==5) fprintf(output_file,
"%g f\n",J_cost);

 for (i=1;i<=n_g;i++) {
 if (asv[i]==1 || asv[i]==3 || asv[i]==5) {
 fprintf(output_file,"%g c%d\n",g[i-1],i);
 }
 else {
 printf("Number of parameters is probably wrong: exiting.\n");
 exit(1);
 }
 }
 return;
 }
 if (newt_it == max_it && convrate > 0.0) {
 printf("Not converged!! \n");
 exit(1);
 }
 else {
 fprintf(output_file,"FAIL\n");
 }

 free(g);
}

5. Theconverge() routine is fairly basic. It reads the global
EXODUS database, then sends them back.

int converge(int exoid, int *max_it, int *newt_it, double *convrate)
{
 int i, inewt, iconv, imax, irate;
 int ret_int, ntime, nvar, conv;
 int error;
 char *cdum=0, *gvar_name[NUM_G_VAR];
 float fdum;
 double gvar[NUM_G_VAR];

 error=ex_inquire(exoid, EX_INQ_TIME, &ntime, &fdum, cdum);

DAK ion Example 408

E
Ap

S

D

P

 complicated.
there are two files,
() . First, the

edurecost_fun()
then reads the
d for the back pressure.
lculation.
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

 error=ex_get_var_param(exoid, "g", &nvar);

 for (i=0; i<nvar;i++) gvar_name[i]= (char *) calloc((MAX_LINE+1),
 sizeof(char));

 error=ex_get_var_names(exoid, "g",nvar, gvar_name);

 for (i=0;i<nvar;i++) {
 if (strcmp(CON_VAR,gvar_name[i])==0) iconv=i;
 if (strcmp(NEWT_VAR,gvar_name[i])==0) inewt=i;
 if (strcmp(MAX_VAR,gvar_name[i])==0) imax=i;
 if (strcmp(RATE_VAR,gvar_name[i])==0) irate=i;

 }

 /* Page 159 SAND92-2137 */
 error=ex_get_glob_vars(exoid, ntime, nvar, gvar);

 if (error == 0) {
 *newt_it=(int) gvar[inewt];
 *max_it=(int) gvar[imax];
 *convrate= gvar[irate];
 conv=(int) gvar[iconv];
 }
 else {
 *newt_it= -1;
 *max_it= -1;
 *convrate= -999999.0;
 conv=0;
 }
 return !conv;
}

The cost function evaluation subroutine,cost_fun() , is more
Actually it isn’t that difficult, it just looks that way. Basically
webspeed.app andvacuum.app which are read bycost_fun
nominal position of the dynamic contact point is read. Proc
then perturbs the values inwebspeed.app and calls GOMA,
perturbed value of the dynamic contact point. This is repeate
The perturbed values are then used for a finite difference ca

DAK ion Example 409

E
Ap

S

D

P

OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
double cost_fun(int exoid_nom)
{
 int i, CPU_word_size, IO_word_size;
 int error, exoid_delta ,idum;
 int ns_num_nodes, *ns_node_list;
 double fdum, J1, J2;
 float version;
 double webspeed_nom,webspeed_delt;
 double Pvacuum_nom,Pvacuum_delt, g1,g2;
 double *ns_X,*ns_Y,*ns_Z,*ns_displx_nom, *ns_displx_delt;
 char filename[]=GOMA_FILE,cdum[9];
 FILE *in_file;

 error=ex_get_node_set_param(exoid_nom, NSET, &ns_num_nodes,&idum);
 ns_node_list=(int *) calloc(ns_num_nodes,sizeof(int));

 error=ex_get_node_set(exoid_nom,NSET, ns_node_list);

 ns_X=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_Y=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_Z=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_displx_nom=(double *) calloc(ns_num_nodes,sizeof(double));
 ns_displx_delt=(double *) calloc(ns_num_nodes,sizeof(double));

 get_displ(exoid_nom,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
 ns_displx_nom);

 /******************/
 in_file=fopen(WEBFILE,”r”);
 fscanf(in_file,”${%s = %lf}”,cdum,&webspeed_nom);

 fclose(in_file);

 webspeed_delt=(1.0+FDEPS)*webspeed_nom;
 in_file=fopen(WEBFILE,”w”);
 fprintf(in_file,”${webspeed = %f}\n”,webspeed_delt);
 fclose(in_file);

 system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se
 stderr -so stdout”);
 /*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
 in_file=fopen(WEBFILE,”w”);
 fprintf(in_file,”${webspeed = %f}\n”,webspeed_nom);
 fclose(in_file);

 CPU_word_size=sizeof(double);
 IO_word_size=0;

DAK ion Example 410

E
Ap

S

D

P

ersion);

ersion);
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
 exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&v

 get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
 ns_displx_delt);
 /***************/
 g1= webspeed_nom/Ls;g1=1.0e3;
 J1= (ns_displx_delt[0] - ns_displx_nom[0])/(webspeed_delt-webspeed_nom);
 /******************/
 in_file=fopen(PRESSFILE,”r”);
 fscanf(in_file,”${%s = %lf}”,cdum,&Pvacuum_nom);
 fclose(in_file);
 Pvacuum_delt=(1.0+FDEPS)*Pvacuum_nom;
 in_file=fopen(PRESSFILE,”w”);
 fprintf(in_file,”${vacuum = %f}\n”,Pvacuum_delt);

 fclose(in_file);
 system(“/home/prschun/.sun5/bin/goma -a -i slot_input -se stderr -so
 stdout”);
 /*system(“/home/prschun/.sun5/bin/goma -a -i slot_input”);*/
 in_file=fopen(PRESSFILE,”w”);
 fprintf(in_file,”${vacuum = %f}\n”,Pvacuum_nom);
 fclose(in_file);

 CPU_word_size=sizeof(double);
 IO_word_size=0;

 exoid_delta=ex_open(filename,EX_READ,&CPU_word_size,&IO_word_size,&v

 get_displ(exoid_delta,NSET,ns_num_nodes,ns_node_list, ns_X, ns_Y, ns_Z,
 ns_displx_delt);

 /***************/
 g2=abs(Pvacuum_nom/Ls);g2=1.0e7;
 J2= (ns_displx_delt[0] - ns_displx_nom[0])/(Pvacuum_delt - Pvacuum_nom);
 /*printf(“J1 = %e , J2 = %e \n”,J1,J2);*/
 return ALPHA*J1 + BETA*J2;
}

6. Now compile the code and run DAKOTA.

DAK ion Example 411

E
Ap

S

D

P

 with another analysis
n GOMA is used for the

ge 2-4 for example)

AKOTA (format of
n be used by your
 If APREPRO is always
 so that it can be used

that you want to vary can
m your code has the
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
Appendix

This appendix will briefly describe the process of using DAKOTA
driver such as FIDAP. The procedure is basically identical to whe
analysis.

1. Set up optimization by writing a DAKOTA input file. (See pa

2. Write an input filter to take the file params.in generated by D
parameter file is on page 8) and write and output file that ca
analysis code. An easy way to do this is to use APREPRO.
used, the input filter in_filt.c can be written generally enough
for all optimizations. (see pages 11-13)

3. Now parameterize your model so that the design variables
be easily changed by APREPRO. Make sure the output fro
information you will need to evaluate your cost function.

in_filt.c out_filt.cMesh/Analysis

DAKOTAparams.in results.out

cost.sh

Figure A. DAKOTA interface scheme

DAK ion Example 412

E
Ap

S

D

P

ode, evaluates your cost
ation requested from
t that DAKOTA can

riven by a shell program
ram to evaluate the cost
OTA Manuals (6/11/99) Example Problems - Engineering Applications - GOMA/EXODUS Applicat

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version
4. Write a program (out_filt.c) that takes the output from your c

function, and writes a file (results.out) that (i) has the inform
DAKOTA (this is specified in params.in) and (ii) is in a forma
read. (see pages 13 - 16)

5. In this tutorial, the programs that result from steps 2-4 are d
cost.sh. DAKOTA, therefore, only has to call the shell prog
function.

Copy to:
MS0826 9111 Dayfile
MS 0826 9111 W. L. Hermina
MS 0826 9111 P. R. Schunk
MS0826 9111 R. R. Rao
MS0826 9111 P. A. Sackinger
MS 0834 9112 T. A. Baer
MS 0826 9111 D. A. Labreche
MS 0557 9741 T. W. Simmermacher

Dr. Richard A. Cairncross
Drexel University
Department of Chemical Engineering
Philadelphia, PA 19104

Dr. Ian Gates
University of Minnesota
Department of Chemical Engineering and Materials Science
421 Washington Ave. SE
Minneapolis, MN 55455

DAK nces 413

E
Ap

S

D

P

inson, S.A., and

omero, V.J.,

ngineering simulation
summarized in[Eldred,
OTA Manuals (6/11/99) Example Problems - Engineering Applications - Additional Refere

ngineering
plications

EACAS
Library

AKOTA
Manuals

Example
roblems

Draft Version

Additional References

Refer to

• [Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutch
Salinger, A.G., 1996]

• [Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., R
Ponslet, E.R., and Chen, K.S., 1996]

for procedures and lessons learned in interfacing with complex e
codes. Key findings in complex engineering applications are also
M.S., 1998].

SEA 414

e, Prentice-Hall,

ewton Methods
2(1988), pp. 273-

s, Addison-Wesley,

h Methods for
ceedings of the 5th
alysis and

ent in a parallel
 Intel Supercomputer
rogram.html),

s for Optimization
ings of the 3rd World
MO-3), Amherst, NY,
CAS Library (6/11/99) Bibliography

Draft Version
Anderson, G., and Anderson, P., 1986The UNIX C Shell Field Guid

Englewood Cliffs, NJ.

Byrd, R.H., Schnabel, R.B., and Schultz, G.A., 1988Parallel quasi-N
for Unconstrained Optimization, Mathematical Programming, 4
306.

Coplien, J.O., 1992Advanced C++ Programming Styles and Idiom
Reading, MA.

Dennis, J.E., and Torczon, V.J., 1994Derivative-Free Pattern Searc
Multidisciplinary Design Problems, paper AIAA-94-4349 in Pro
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary An
Optimization, Panama City, FL, Sept. 7-9, 1994, pp. 922-932.

Eckstein, J., Hart, W.E., and Phillips, C.A., 1997Resource managem
mixed integer programming package, Proceedings of the 1997
Users Group Conference (http://www.cs.sandia.gov/ISUG97/p
Albuquerque, NM, June 11-13, 1997.

Eldred, M.S., and Schimel, B.D., 1999Extended Parallelism Model
on Massively Parallel Computers, paper 16-POM-2 in Proceed
Congress of Structural and Multidisciplinary Optimization (WCS
May 17-21, 1999.

SEA 415

ultilevel Parallel
Proceedings of the
y Analysis and

ing Applications,
oratories, Albuquerque,

on, S.A., and Salinger,
 Optimization
n Proceedings of the
y Analysis and

ero, V.J., Ponslet, E.R.,
lations with
ulation in
d from Eldred, M.S.,
omplex
paper AIAA-95-

Structures, Structural
10-13, 1995, pp. 2406-
CAS Library (6/11/99) Bibliography

Draft Version
Eldred, M.S., and Hart, W.E., 1998Design and Implementation of M

Optimization on the Intel TeraFLOPS, paper AIAA-98-4707 in
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinar
Optimization, St. Louis, MO, Sept. 2-4, 1998, pp. 44-54.

Eldred, M.S., 1998Optimization Strategies for Complex Engineer
Sandia Technical Report SAND98-0340, Sandia National Lab
NM.

Eldred, M.S., Hart, W.E., Bohnhoff, W.J., Romero, V.J., Hutchins
A.G., 1996Utilizing Object-Oriented Design to Build Advanced
Strategies with Generic Implementation, paper AIAA-96-4164 i
6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinar
Optimization, Bellevue, WA, Sept. 4-6, 1996, pp. 1568-1582.

Eldred, M.S., Outka, D.E., Bohnhoff, W.J., Witkowski, W.R., Rom
and Chen, K.S., 1996Optimization of Complex Mechanics Simu
Object-Oriented Software Design, Computer Modeling and Sim
Engineering, Vol. 1, No. 3, August 1996. Revised and extende
Outka, D.E., Fulcher, C.W., and Bohnhoff, W.J.,Optimization of C
Mechanics Simulations with Object-Oriented Software Design,
1433 in Proceedings of the 36th AIAA/ASME/ ASCE/AHE/ASC
Dynamics, and Materials Conference, New Orleans, LA, April
2415.

SEA 416

nals of Statistics,

tterns: Elements of
, MA.

s Guide for
mming, System
tanford, CA.

n , Academic Press,

mplementation of
er Science Division,

rallel Programing
, MA.

timization
boratories,

guage, Second
CAS Library (6/11/99) Bibliography

Draft Version
Friedman, J. H., 1991Multivariate Adaptive Regression Splines, An

Vol. 19, No. 1, March 1991, pp. 1-141.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995Design Pa
Reusable Object-Oriented Software, Addison-Wesley, Reading

Gill, P.E., Murray, W., Saunders, M.A., and Wright, M.H., 1986User’
NPSOL (Version 4.0): A Fortran Package for Nonlinear Progra
Optimization Laboratory, TR SOL-86-2, Stanford University, S

Gill, P.E., Murray, W., and Wright, M.H., 1981Practical Optimizatio
San Diego, CA.

Gropp, W., and Lusk, E., 1996User’s Guide for mpich, a Portable I
MPI , Argonne National Laboratory, Mathematics and Comput
Report ANL/MCS-TM-ANL-96/6.

Gropp, W., Lusk, E., and Skjellum, A., 1994Using MPI, Portable Pa
with the Message-Passing Interface, The MIT Press, Cambridge

Hart, W.E., 1997SGOPT, A C++ Library of (Stochastic) Global Op
Algorithms , Sandia Report SAND98-xxxx, Sandia National La
Albuquerque, NM.

Kernighan, B.W., and Ritchie, D.M., 1988The C Programming Lan
Edition, Prentice Hall PTR, Englewood Cliffs, NJ.

SEA 417

nlinear
Laboratories,

actor for
ND95-8224, Sandia

fer Design of
 SAND95-8223,

6 “Automatic
Heated
118 inProceedings of
inary Analysis

Isolator Locations for
vestigation,” paper
SMO Symposium
Sept. 4-6, 1996, pp.
6-1169, May 1996.
CAS Library (6/11/99) Bibliography

Draft Version
Meza, J.C., 1994OPT++: An Object-Oriented Class Library for No

Optimization , Sandia Report SAND94-8225, Sandia National
Livermore, CA.

Meza, J.C., and Plantenga, T.D., 1995Optimal Control of a CVD Re
Prescribed Temperature Behavior, Sandia Technical Report SA
National Laboratories, Livermore, CA.

Moen, C.D., Spence, P.A., and Meza, J.C., 1995Optimal Heat Trans
Chemical Vapor Deposition Reactors, Sandia Technical Report
Sandia National Laboratories, Livermore, CA.

Moen, C.D., Spence, P.A., Meza, J.C., and Plantenga, T.D., 199
Differentiation for Gradient-Based Optimization of Radiatively
Microelectronics Manufacturing Equipment”, paper AIAA-96-4
the 6th AIAA/USAF/NASA/ISSMO Symposium on Multidiscipl
and Optimization, Bellevue, WA, pp. 1167-1175.

Ponslet, E.R., and Eldred, M.S., 1996 “Discrete Optimization of
Vibration Isolation Systems: an Analytical and Experimental In
AIAA-96-4178 inProceedings of the 6th AIAA/USAF/NASA/IS
on Multidisciplinary Analysis and Optimization , Bellevue, WA,
1703-1716. Also appears as Sandia Technical Report SAND9

SEA 418

s, R.A., 1995GOMA - A
ndary Problems
ical Species

a National

 Parameterizing
a National

, J., 1996MPI: The

ect-Oriented
 of Computer
s yet unpublished).

Version 4.20, Inc.,

6: An Object-
llel Computers,
CAS Library (6/11/99) Bibliography

Draft Version
Schunk, P.R., Sackinger, P.A., Rao, R.R., Chen, K.S., Cairncros

Full-Newton Finite Element Program for Free and Moving Bou
with Coupled Fluid/Solid Momentum, Energy, Mass, and Chem
Transport: User’s Guide, Sandia Report SAND95-2937, Sandi
Laboratories, Albuquerque, NM.

Sjaardema, G.D., 1992APREPRO: An Algebraic Preprocessor for
Finite Element Analyses, Sandia Report SAND92-2291, Sandi
Laboratories, Albuquerque, NM.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra
Complete Reference, MIT Press, Cambridge, MA.

Tong, C.H., and Meza, J.C., 1997DOOMSDACE: A Distributed Obj
Software with Multiple Samplings for the Design and Analysis
Experiments, Sandia Technical Report SAND97-XXXX (draft a

Vanderplaats Research and Development, 1995DOT Users Manual,
Colorado Springs.

Weatherby, J.R., Schutt, J.A., Peery, J.S., and Hogan, R.E., 199Delta
Oriented Finite Element Code Architecture for Massively Para
SAND96-0473.

SEA 419

ive and Complex
ontract AO-7736 CA
CAS Library (6/11/99) Bibliography

Draft Version
Zimmerman, D.C., 1996Genetic Algorithms for Navigating Expens

Design Spaces, Final Report for Sandia National Laboratories c
02, Sept. 1996.

	DAKOTA Manuals
	User’s Instructions
	DAKOTA Introduction
	Motivation
	What is DAKOTA?
	Tutorial
	Getting started
	A basic optimization problem
	Figure 1 Container wall-to-end-cap seal.
	Figure 2 A graphical representation of the container optimization problem.
	Constructing the interface
	Figure 3 Fortran listing of the interface for the container example.
	Figure 4 C language listing of the container simulator example.
	Figure 5 C++ listing of the container optimization example
	Creating a DAKOTA input file
	Figure 6 DAKOTA input file for the container optimization example.
	Running DAKOTA
	Interpreting the results
	Figure 7 Example DAKOTA output

	Some useful features of DAKOTA
	Restarting DAKOTA
	The parallel interface
	Figure 8 DAKOTA input file for the parallel container optimization example.
	Figure 9 UNIX shell script file for parallel DAKOTA.
	Figure 10 Sample output results for a parallel DAKOTA run

	Decision Tables for DAKOTA Methods and Strategies
	Table 1 Constraints
	Figure 11 Generalizations of optimizer constraint handling capabilities.
	Table 2 Variables
	Table 3 Local vs. global
	Table 4 Smooth vs. nonsmooth
	Table 5 Algorithmic parallelism
	Table 6 All inclusive summary
	Table 7 Other method and strategy classifications

	Capability Overview
	Capability Introduction
	Iterator and Strategy Hierarchies
	Figure 12 Iterator and Strategy Hierarchies

	Optimization Capabilities
	Introduction
	DOT Library
	NPSOL Library
	OPT++ Library
	SGOPT Library

	Uncertainty Assessment Capabilities
	Introduction
	Monte Carlo Probability
	Mean Value

	Nonlinear Least Squares Capabilities
	Introduction
	Gauss-Newton

	Parameter Study Capabilities
	Introduction
	Initial Values
	Data Cataloguing

	Vector Parameter Study
	List Parameter Study
	Centered Parameter Study
	Figure 13 Example centered parameter study.

	Multidimensional Parameter Study
	Figure 14 Example multidimensional parameter study

	Strategy Capabilities
	Introduction
	Single Method
	Multilevel Hybrid Optimization
	The Uncoupled Approach
	Figure 15 Uncoupled multilevel hybrid optimization strategy

	The Uncoupled Adaptive Approach
	Figure 16 Uncoupled adaptive multilevel hybrid optimization strategy

	The Coupled Approach

	Sequential Approximate Optimization
	Figure 17 Sequential approximate optimization strategy

	Optimization Under Uncertainty
	Branch and Bound

	Simulation Interfacing
	Dakota Interface Abstraction
	Figure 18 The DakotaInterface class hierarchy

	The Application Interface
	Figure 19 The Application Interface Concept

	The Direct Function Application Interface
	3-piece Interface
	1-piece Interface

	The System Call Application Interface
	3-piece Interface
	1-piece Interface
	Additional Features
	File saving
	File tagging
	Unix temporary files
	Common filtering operations

	Examples
	The NO_FILTER option
	The named filter option

	DAKOTA File Data Formats
	Parameters file format (standard)
	Figure 20 Parameters file data format, standard option
	Table 8 Request vector codes
	Parameters file format (APREPRO)
	Figure 21 Parameters file data format, APREPRO option
	Results file format
	Figure 22 Results file data format
	Active set vector control
	Examples

	Failure capturing
	Failure detection
	Failure communication
	System call application interfaces
	Direct application interfaces

	Failure recovery
	Abort
	Retry
	Recover
	Continuation

	The Approximation Interface
	Building an approximation
	Updating an approximation
	Modifying an approximation
	Performing function evaluations

	The RSM Approximation Interface
	The MARS Approximation Interface
	The ANN Approximation Interface

	Exploiting Parallelism
	Parallelism Introduction
	Enabling Software Components
	Direct function synchronization
	Synchronous
	Asynchronous

	System call synchronization
	Synchronous
	Asynchronous

	Master-slave algorithm
	Single-level parallelism
	Multilevel parallelism
	Pending Extensions

	Implementation of Parallelism
	Single-processor DAKOTA implementation
	Multiprocessor DAKOTA implementation

	Specifying Parallelism
	The Model
	The Iterator
	Single-processor DAKOTA specification
	Multiprocessor DAKOTA specification

	Running a parallel DAKOTA job
	Single-processor DAKOTA execution
	Multiprocessor DAKOTA execution
	Caveats

	DAKOTA Commands
	Commands Introduction
	Overview
	IDR Input Specification File
	Common Specification Mistakes

	Sample dakota.in Files
	Sample 1: Optimization
	Sample 2: Least Squares
	Sample 3: Nondeterministic Analysis
	Sample 4: Parameter Study
	Sample 5: Multilevel Hybrid Strategy

	Running DAKOTA
	Executable Location
	Remote installations
	Sandia developer-supported installations

	Command Line Inputs
	Execution Syntax
	Input/Output Management
	Restart Management

	Tabular descriptions

	Interface Commands
	Description
	Specification
	Set Identifier
	Table 9 Specification detail for set identifier

	Application Interface
	Table 10 Specification detail for application interfaces
	Table 11 Additional specifications for system call application interfaces
	Table 12 Additional specifications for direct application interfaces

	Approximation Interface
	Table 13 Specification detail for approximation interfaces

	Test Interface
	Table 14 Specification detail for test interfaces

	Variables Commands
	Description
	Specification
	Set Identifier
	Table 15 Specification detail for set identifier

	Design Variables
	Table 16 Specification detail for continuous design variables
	Table 17 Specification detail for discrete design variables

	Uncertain Variables
	Table 18 Specification detail for uncertain variables specification

	State Variables
	Table 19 Specification detail for continuous state variables
	Table 20 Specification detail for discrete state variables

	Responses Commands
	Description
	Specification
	Set Identifier
	Table 21 Specification detail for set identifier

	Active Set Vector Usage
	Table 22 Specification detail for active set vector usage specification

	Function specification
	Objective and Constraint Functions (Optimization Data Set)
	Table 23 Specification detail for optimization data sets

	Least Squares Terms (Least Squares Data Set)
	Table 24 Specification detail for nonlinear least squares data sets

	Response Functions (Generic Data Set)
	Table 25 Specification detail for generic response function data sets

	Gradient specification
	No Gradients
	Numerical Gradients
	Table 26 Specification detail for numerical gradients

	Analytic Gradients
	Mixed Gradients
	Table 27 Specification detail for mixed gradients

	Hessian specification
	No Hessians
	Analytic Hessians

	Strategy Commands
	Description
	Specification
	Single Method Commands
	Table 28 Specification detail for single_method strategies

	Multilevel Hybrid Optimization Commands
	Table 29 Specification detail for uncoupled multi_level strategies
	Table 30 Specification detail for coupled multi_level strategies

	Sequential Approximate Optimization Commands
	Table 31 Specification detail for seq_approximate_opt strategies

	Optimization Under Uncertainty Commands
	Table 32 Specification detail for opt_under_uncertainty strategies

	Branch and Bound Commands
	Table 33 Specification detail for branch_and_bound strategies

	Method Commands
	Description
	Specification
	Method Independent Controls
	Table 34 Specification detail for the method independent controls

	DOT Methods
	Method independent controls
	Method dependent controls
	Table 35 Specification detail for the DOT methods

	NPSOL Method
	Method independent controls
	Method dependent controls
	Table 36 Specification detail for the NPSOL SQP method

	OPT++ Methods
	Method independent controls
	Method dependent controls
	Table 37 Specification detail for the OPT++ conjugate gradient method
	Table 38 Specification detail for unconstrained and bound-constrained Newton-based OPT++ methods
	Table 39 Specification detail for barrier-constrained Newton OPT++ methods
	Table 40 Specification detail for the OPT++ bound constrained ellipsoid method
	Table 41 Specification detail for the OPT++ PDS method
	Table 42 Specification detail for OPT++ new method testing

	SGOPT Methods
	Method independent controls
	Method dependent controls
	Table 43 Specification detail for SGOPT method dependent controls
	Genetic algorithms (GAs)
	Table 44 Specification detail for the SGOPT GA methods
	Table 45 Specification detail for SGOPT real GA crossover and mutation
	Table 46 Specification detail for SGOPT integer GA crossover and mutation
	Coordinate pattern search (CPS)
	Table 47 Specification detail for the SGOPT CPS methods
	Solis-Wets
	Table 48 Specification detail for the SGOPT Solis-Wets method
	Stratified Monte Carlo
	Table 49 Specification detail for the SGOPT sMC method

	Nondeterministic Methods
	Monte Carlo Probability Method
	Table 50 Specification detail for the Monte Carlo probability method

	Mean Value Method
	Table 51 Specification detail for the mean value method

	Parameter Study Methods
	Vector Parameter Study
	Table 52 final_point specification detail for the vector parameter study
	Table 53 step_vector specification detail for the vector parameter study

	List Parameter Study
	Table 54 Specification detail for the list parameter study

	Centered Parameter Study
	Table 55 Specification detail for the centered parameter study

	Multidimensional Parameter Study
	Table 56 Specification detail for the multidimensional parameter study

	Configuration Management
	Installation Guide
	Distributions and Checkouts
	Basic Installation
	Configuration Details
	Configuring with specific vendor optimizers
	Configuring with the Message Passing Interface

	Makefile Details
	Caveats
	Intel cross-compilation
	System modifications

	Installation Examples
	Sun Solaris platform

	Example Problems
	Textbook Example
	Textbook Problem Formulation
	Methods
	Results
	Optimization
	Least Squares

	Rosenbrock Example
	Rosenbrock Problem Formulation
	Methods
	Results

	Cylinder Head Example
	Cylinder Head Problem Formulation
	Methods
	Optimization Results

	Engineering Applications
	Transportation Cask Example
	GOMA/EXODUS Application Example
	Standard text_book example
	Example text_book recast in GOMA format: Filter Introduction
	DAKOTA Filter Tutorial
	Dryer Design Example
	Slot Coater Example
	Appendix

	Additional References

